Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32117061

ABSTRACT

Increased rates of locoregional recurrence (LR) have been observed in triple negative breast cancer (TNBC) despite multimodality therapy, including radiation (RT). Recent data suggest inhibiting the androgen receptor (AR) may be an effective radiosensitizing strategy, and AR is expressed in 15-35% of TNBC tumors. The aim of this study was to determine whether seviteronel (INO-464), a novel CYP17 lyase inhibitor and AR antagonist, is able to radiosensitize AR-positive (AR+) TNBC models. In cell viability assays, seviteronel and enzalutamide exhibited limited effect as a single agent (IC50 > 10 µM). Using clonogenic survival assays, however, AR knockdown and AR inhibition with seviteronel were effective at radiosensitizing cells with radiation enhancement ratios of 1.20-1.89 in models of TNBC with high AR expression. AR-negative (AR-) models, regardless of their estrogen receptor expression, were not radiosensitized with seviteronel treatment at concentrations up to 5 µM. Radiosensitization of AR+ TNBC models was at least partially dependent on impaired dsDNA break repair with significant delays in repair at 6, 16, and 24 h as measured by immunofluorescent staining of γH2AX foci. Similar effects were observed in an in vivo AR+ TNBC xenograft model where there was a significant reduction in tumor volume and a delay to tumor doubling and tripling times in mice treated with seviteronel and radiation. Following combination treatment with seviteronel and radiation, increased binding of AR occurred at DNA damage response genes, including genes involved both in homologous recombination and non-homologous end joining. This trend was not observed with combination treatment of enzalutamide and RT, suggesting that seviteronel may have a different mechanism of radiosensitization compared to other AR inhibitors. Enzalutamide and seviteronel treatment also had different effects on AR and AR target genes as measured by immunoblot and qPCR. These results implicate AR as a mediator of radioresistance in AR+ TNBC models and support the use of seviteronel as a radiosensitizing agent in AR+ TNBC.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Enzyme Inhibitors/pharmacology , Naphthalenes/pharmacology , Radiation-Sensitizing Agents/pharmacology , Steroid 17-alpha-Hydroxylase/antagonists & inhibitors , Triazoles/pharmacology , Triple Negative Breast Neoplasms/radiotherapy , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzamides , Cell Line, Tumor , Female , Humans , Lyases/antagonists & inhibitors , MCF-7 Cells , Mice , Mice, Inbred C57BL , Mice, SCID , Nitriles , Phenylthiohydantoin/administration & dosage , Phenylthiohydantoin/analogs & derivatives , Radiation Tolerance/drug effects , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
2.
Clin Cancer Res ; 22(23): 5864-5875, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27225691

ABSTRACT

PURPOSE: While effective targeted therapies exist for estrogen receptor-positive and HER2-positive breast cancer, no such effective therapies exist for triple-negative breast cancer (TNBC); thus, it is clear that additional targets for radiosensitization and treatment are critically needed. EXPERIMENTAL DESIGN: Expression microarrays, qRT-PCR, and Western blotting were used to assess MELK RNA and protein expression levels. Clonogenic survival assays were used to quantitate the radiosensitivity of cell lines at baseline and after MELK inhibition. The effect of MELK knockdown on DNA damage repair kinetics was determined using γH2AX staining. The in vivo effect of MELK knockdown on radiosensitivity was performed using mouse xenograft models. Kaplan-Meier analysis was used to estimate local control and survival information, and a Cox proportional hazards model was constructed to identify potential factors impacting local recurrence-free survival. RESULTS: MELK expression is significantly elevated in breast cancer tissues compared with normal tissue as well as in TNBC compared with non-TNBC. MELK RNA and protein expression is significantly correlated with radioresistance in breast cancer cell lines. Inhibition of MELK (genetically and pharmacologically) induces radiation sensitivity in vitro and significantly delayed tumor growth in vivo in multiple models. Kaplan-Meier survival and multivariable analyses identify increasing MELK expression as being the strongest predictor of radioresistance and increased local recurrence in multiple independent datasets. CONCLUSIONS: Here, we identify MELK as a potential biomarker of radioresistance and target for radiosensitization in TNBC. Our results support the rationale for developing clinical strategies to inhibit MELK as a novel target in TNBC. Clin Cancer Res; 22(23); 5864-75. ©2016 AACR.


Subject(s)
Biomarkers, Tumor/metabolism , Protein Serine-Threonine Kinases/metabolism , Triple Negative Breast Neoplasms/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/physiology , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , MCF-7 Cells , Mice , Neoplasm Recurrence, Local/metabolism , Radiation Tolerance/physiology , Receptor, ErbB-2
SELECTION OF CITATIONS
SEARCH DETAIL
...