Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Rep ; 7: 1145-1156, 2020.
Article in English | MEDLINE | ID: mdl-32983902

ABSTRACT

We have developed a novel vaping product (NVP) IS1.0(TT), which utilises a stainless-steel mesh to transfer and vaporise the e-liquid, mitigating some of the potential sources of toxicants that can be generated using the more traditional 'wick and coil' approach. The emissions from IS1.0(TT) have previously been found to have lower levels of toxicants overall when directly compared with a commercial wick and coil e-cig. This current study assessed the toxicological responses to aerosols from this NVP. Responses induced by IS1.0(TT)were compared to those from a 3R4F reference cigarette, using in vitro test methods which included regulatory genetic toxicological assays as well as some more contemporary screening approaches. The experimental conditions were designed to facilitate the testing of aerosol from this vaping product at doses that in most cases greatly exceeded those of the 3R4F comparator showed little to no toxicological responses and demonstrated significantly reduced effects in these in vitro assays when compared to 3R4F. Furthermore, the extreme doses tested in the present study indicate that the toxicant profile of this NVP translates to lower biological activity in vitro, and suggests that the absolute risk hazard level associated with electronic cigarettes can be reduced through continuous improvement as the technology evolves.

2.
J Biol Chem ; 276(40): 37109-19, 2001 Oct 05.
Article in English | MEDLINE | ID: mdl-11481324

ABSTRACT

We have investigated glycogen synthase (GS) activation in L6hIR cells expressing a peptide corresponding to the kinase regulatory loop binding domain of insulin receptor substrate-2 (IRS-2) (KRLB). In several clones of these cells (B2, F4), insulin-dependent binding of the KRLB to insulin receptors was accompanied by a block of IRS-2, but not IRS-1, phosphorylation, and insulin receptor binding. GS activation by insulin was also inhibited by >70% in these cells (p < 0.001). The impairment of GS activation was paralleled by a similarly sized inhibition of glycogen synthase kinase 3 alpha (GSK3 alpha) and GSK3 beta inactivation by insulin with no change in protein phosphatase 1 activity. PDK1 (a phosphatidylinositol trisphosphate-dependent kinase) and Akt/protein kinase B (PKB) activation by insulin showed no difference in B2, F4, and in control L6hIR cells. At variance, insulin did not activate PKC zeta in B2 and F4 cells. In L6hIR, inhibition of PKC zeta activity by either a PKC zeta antisense or a dominant negative mutant also reduced by 75% insulin inactivation of GSK3 alpha and -beta (p < 0.001) and insulin stimulation of GS (p < 0.002), similar to Akt/PKB inhibition. In L6hIR, insulin induced protein kinase C zeta (PKC zeta) co-precipitation with GSK3 alpha and beta. PKC zeta also phosphorylated GSK3 alpha and -beta. Alone, these events did not significantly affect GSK3 alpha and -beta activities. Inhibition of PKC zeta activity, however, reduced Akt/PKB phosphorylation of the key serine sites on GSK3 alpha and -beta by >80% (p < 0.001) and prevented full GSK3 inactivation by insulin. Thus, IRS-2, not IRS-1, signals insulin activation of GS in the L6hIR skeletal muscle cells. In these cells, insulin inhibition of GSK3 alpha and -beta requires dual phosphorylation by both Akt/PKB and PKC zeta.


Subject(s)
Muscle, Skeletal/enzymology , Phosphoproteins/metabolism , Protein Kinase C/metabolism , Protein Serine-Threonine Kinases , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Cells, Cultured , Enzyme Activation , Glycogen Synthase Kinase 3 , Glycogen Synthase Kinases , Humans , Insulin/physiology , Insulin Receptor Substrate Proteins , Intracellular Signaling Peptides and Proteins , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Peptides/metabolism , Phosphorylation , Protein Structure, Tertiary , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-akt , Signal Transduction , Viral Proteins/metabolism
3.
Diabetes ; 50(6): 1244-52, 2001 06.
Article in English | MEDLINE | ID: mdl-11375323

ABSTRACT

Overexpression of the PED/PEA-15 protein in muscle and adipose cells increases glucose transport and impairs further insulin induction. Like glucose transport, protein kinase C (PKC)-alpha and -beta are also constitutively activated and are not further stimulatable by insulin in L6 skeletal muscle cells overexpressing PED (L6(PED)). PKC-zeta features no basal change but completely loses insulin sensitivity in L6(PED). In these cells, blockage of PKC-alpha and -beta additively returns 2-deoxy-D-glucose (2-DG) uptake to the levels of cells expressing only endogenous PED (L6(WT)). Blockage of PKC-alpha and -beta also restores insulin activation of PKC-zeta in L6(PED) cells, with that of PKC-alpha sixfold more effective than PKC-beta. Similar effects on 2-DG uptake and PKC-zeta were also achieved by 50-fold overexpression of PKC-zeta in L6(PED). In L6(WT), fivefold overexpression of PKC-alpha or -beta increases basal 2-DG uptake and impairs further insulin induction with no effect on insulin receptor or insulin receptor substrate phosphorylation. In these cells, overexpression of PKC-alpha blocks insulin induction of PKC-zeta activity. PKC-beta is 10-fold less effective than PKC-alpha in inhibiting PKC-zeta stimulation. Expression of the dominant-negative K(281)-->W PKC-zeta mutant simultaneously inhibits insulin activation of PKC-zeta and 2-DG uptake in the L6(WT) cells. We conclude that activation of classic PKCs, mainly PKC-alpha, inhibits PKC-zeta and may mediate the action of PED on glucose uptake in L6 skeletal muscle cells.


Subject(s)
Histocompatibility Antigens Class I/pharmacology , Isoenzymes/metabolism , Monosaccharide Transport Proteins/metabolism , Muscle, Skeletal/metabolism , Phosphoproteins/pharmacology , Protein Kinase C/antagonists & inhibitors , Protein Kinase C/metabolism , Apoptosis Regulatory Proteins , Cell Line , Enzyme Activation/physiology , Histocompatibility Antigens Class I/metabolism , Intracellular Signaling Peptides and Proteins , Muscle, Skeletal/cytology , Mutagenesis , Phosphorylation , Protein Kinase C-alpha , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...