Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Biobehav Rev ; 138: 104712, 2022 07.
Article in English | MEDLINE | ID: mdl-35643119

ABSTRACT

Organisms ranging from plants to higher mammals have developed 24-hour oscillation rhythms to optimize physiology to environmental changes and regulate a plethora of neuroendocrine and behavioral processes, including neurotransmitter and hormone regulation, stress response and learning and memory function. Compelling evidence indicates that a wide array of memory processes is strongly influenced by stress- and emotional arousal-activated neurobiological systems, including the endocannabinoid system which has been extensively shown to play an integral role in mediating stress effects on memory. Here, we review findings showing how circadian rhythms and time-of-day influence stress systems and memory performance. We report evidence of circadian regulation of memory under stress, focusing on the role of the endocannabinoid system and highlighting its circadian rhythmicity. Our discussion illustrates how the endocannabinoid system mediates stress effects on memory in a circadian-dependent fashion. We suggest that endocannabinoids might regulate molecular mechanisms that control memory function under circadian and stress influence, with potential important clinical implications for both neurodevelopmental disorders and psychiatric conditions involving memory impairments.


Subject(s)
Arousal , Endocannabinoids , Animals , Arousal/physiology , Circadian Rhythm , Emotions/physiology , Endocannabinoids/physiology , Humans , Mammals , Memory/physiology
2.
Front Pharmacol ; 12: 644521, 2021.
Article in English | MEDLINE | ID: mdl-33716754

ABSTRACT

Amphetamine is a potent psychostimulant that increases brain monoamine levels. Extensive evidence demonstrated that norepinephrine is crucially involved in the regulation of memory consolidation for stressful experiences. Here, we investigated amphetamine effects on the consolidation of long-term recognition memory in rats exposed to different intensities of forced swim stress immediately after training. Furthermore, we evaluated whether such effects are dependent on the activation of the peripheral adrenergic system. To this aim, male adult Sprague Dawley rats were subjected to an object recognition task and intraperitoneally administered soon after training with amphetamine (0.5 or 1 mg/kg), or its corresponding vehicle. Rats were thereafter exposed to a mild (1 min, 25 ± 1°C) or strong (5 min, 19 ± 1°C) forced swim stress procedure. Recognition memory retention was assessed 24-h after training. Our findings showed that amphetamine enhances the consolidation of memory in rats subjected to mild stress condition, while it impairs long-term memory performance in rats exposed to strong stress. These dichotomic effects is dependent on stress-induced activation of the peripheral adrenergic response.

3.
Neuropsychopharmacology ; 46(5): 992-1003, 2021 04.
Article in English | MEDLINE | ID: mdl-33452437

ABSTRACT

Peripheral inflammatory conditions, including those localized to the gastrointestinal tract, are highly comorbid with psychiatric disorders such as anxiety and depression. These behavioral symptoms are poorly managed by conventional treatments for inflammatory diseases and contribute to quality of life impairments. Peripheral inflammation is associated with sustained elevations in circulating glucocorticoid hormones, which can modulate central processes, including those involved in the regulation of emotional behavior. The endocannabinoid (eCB) system is exquisitely sensitive to these hormonal changes and is a significant regulator of emotional behavior. The impact of peripheral inflammation on central eCB function, and whether this is related to the development of these behavioral comorbidities remains to be determined. To examine this, we employed the trinitrobenzene sulfonic acid-induced model of colonic inflammation (colitis) in adult, male, Sprague Dawley rats to produce sustained peripheral inflammation. Colitis produced increases in behavioral measures of anxiety and elevations in circulating corticosterone. These alterations were accompanied by elevated hydrolytic activity of the enzyme fatty acid amide hydrolase (FAAH), which hydrolyzes the eCB anandamide (AEA), throughout multiple corticolimbic brain regions. This elevation of FAAH activity was associated with broad reductions in the content of AEA, whose decline was driven by central corticotropin releasing factor type 1 receptor signaling. Colitis-induced anxiety was reversed following acute central inhibition of FAAH, suggesting that the reductions in AEA produced by colitis contributed to the generation of anxiety. These data provide a novel perspective for the pharmacological management of psychiatric comorbidities of chronic inflammatory conditions through modulation of eCB signaling.


Subject(s)
Colitis , Quality of Life , Amidohydrolases/metabolism , Animals , Anxiety , Endocannabinoids , Male , Polyunsaturated Alkamides , Rats , Rats, Sprague-Dawley , Up-Regulation
4.
Br J Pharmacol ; 178(4): 983-996, 2021 02.
Article in English | MEDLINE | ID: mdl-33314038

ABSTRACT

BACKGROUND AND PURPOSE: Women are twice as likely as men to develop post-traumatic stress disorder (PTSD) making the search for biological mechanisms underlying these gender disparities especially crucial. One of the hallmark symptoms of PTSD is an alteration in the ability to extinguish fear responses to trauma-associated cues. In male rodents, the endocannabinoid system can modulate fear extinction and has been suggested as a therapeutic target for PTSD. However, whether and how the endocannabinoid system may modulate fear expression and extinction in females remains unknown. EXPERIMENTAL APPROACH: To answer this question, we pharmacologically manipulated endocannabinoid signalling in male and female rats prior to extinction of auditory conditioned fear and measured both passive (freezing) and active (darting) conditioned responses. KEY RESULTS: Surprisingly, we found that acute systemic inhibition of the endocannabinoid anandamide (AEA) or 2-arachidonoyl glycerol (2-AG) hydrolysis did not significantly alter fear expression or extinction in males. However, the same manipulations in females produced diverging effects. Increased AEA signalling at vanilloid TRPV1 receptors impaired fear memory extinction. In contrast, inhibition of 2-AG hydrolysis promoted active over passive fear responses acutely via activation of cannabinoid1 (CB1 ) receptors. Measurement of AEA and 2-AG levels after extinction training revealed sex- and brain region-specific changes. CONCLUSION AND IMPLICATIONS: We provide the first evidence that AEA and 2-AG signalling affect fear expression and extinction in females in opposite directions. These findings are relevant to future research on sex differences in mechanisms of fear extinction and may help develop sex-specific therapeutics to treat trauma-related disorders.


Subject(s)
Endocannabinoids , Fear , Animals , Conditioning, Classical , Extinction, Psychological , Female , Male , Memory , Rats
5.
Int J Mol Sci ; 21(19)2020 Oct 03.
Article in English | MEDLINE | ID: mdl-33023013

ABSTRACT

BACKGROUND: Cannabinoids induce biphasic effects on memory depending on stress levels. We previously demonstrated that different stress intensities, experienced soon after encoding, impaired rat short-term recognition memory in a time-of-day-dependent manner, and that boosting endocannabinoid anandamide (AEA) levels restored memory performance. Here, we examined if two different stress intensities and time-of-day alter hippocampal endocannabinoid tone, and whether these changes modulate short-term memory. METHODS: Male Sprague-Dawley rats were subjected to an object recognition task and exposed, at two different times of the day (i.e., morning or afternoon), to low or high stress conditions, immediately after encoding. Memory retention was assessed 1 hr later. Hippocampal AEA and 2-arachidonoyl glycerol (2-AG) content and the activity of their primary degrading enzymes, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), were measured soon after testing. RESULTS: Consistent with our previous findings, low stress impaired 1-hr memory performance only in the morning, whereas exposure to high stress impaired memory independently of testing time. Stress exposure decreased AEA levels independently of memory alterations. Interestingly, exposure to high stress decreased 2-AG content and, accordingly, increased MAGL activity, selectively in the afternoon. Thus, to further evaluate 2-AG's role in the modulation of short-term recognition memory, rats were given bilateral intra-hippocampal injections of the 2-AG hydrolysis inhibitor KML29 immediately after training, then subjected to low or high stress conditions and tested 1 hr later. CONCLUSIONS: KML29 abolished the time-of-day-dependent impairing effects of stress on short-term memory, ameliorating short-term recognition memory performance.


Subject(s)
Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Glycerides/metabolism , Hippocampus/metabolism , Memory, Short-Term/physiology , Amidohydrolases/genetics , Animals , Arachidonic Acids/antagonists & inhibitors , Arachidonic Acids/genetics , Benzodioxoles/pharmacology , Emotions/physiology , Endocannabinoids/antagonists & inhibitors , Endocannabinoids/genetics , Glycerides/antagonists & inhibitors , Glycerides/genetics , Hippocampus/drug effects , Hippocampus/physiology , Humans , Male , Monoacylglycerol Lipases/genetics , Piperidines/pharmacology , Polyunsaturated Alkamides/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/genetics
6.
Front Mol Neurosci ; 12: 292, 2019.
Article in English | MEDLINE | ID: mdl-31849606

ABSTRACT

Human studies have consistently shown that drugs of abuse affect memory function. The psychostimulants amphetamine and the "bath salt" 3,4-methylenedioxypyrovalerone (MDPV) increase brain monoamine levels through a similar, yet not identical, mechanism of action. Findings indicate that amphetamine enhances the consolidation of memory for emotional experiences, but still MDPV effects on memory function are underinvestigated. Here, we tested the effects induced by these two drugs on generalization of fear memory and their relative neurobiological underpinnings. To this aim, we used a modified version of the classical inhibitory avoidance task, termed inhibitory avoidance discrimination task. According to such procedure, adult male Sprague-Dawley rats were first exposed to one inhibitory avoidance apparatus and, with a 1-min delay, to a second apparatus where they received an inescapable footshock. Forty-eight hours later, retention latencies were tested, in a randomized order, in the two training apparatuses as well as in a novel contextually modified apparatus to assess both strength and generalization of memory. Our results indicated that both amphetamine and MDPV induced generalization of fear memory, whereas only amphetamine enhanced memory strength. Co-administration of the ß-adrenoceptor antagonist propranolol prevented the effects of both amphetamine and MDPV on the strength and generalization of memory. The dopaminergic receptor blocker cis-flupenthixol selectively reversed the amphetamine effect on memory generalization. These findings indicate that amphetamine and MDPV induce generalization of fear memory through different modulations of noradrenergic and dopaminergic neurotransmission.

7.
Psychoneuroendocrinology ; 108: 155-162, 2019 10.
Article in English | MEDLINE | ID: mdl-31302498

ABSTRACT

The endocannabinoid system plays a key role in the control of emotional responses to environmental challenges. CB1 receptors are highly expressed within cortico-limbic brain areas, where they modulate stress effects on memory processes. Glucocorticoid and endocannabinoid release is influenced by circadian rhythm. Here, we investigated how different stress intensities immediately after encoding influence rat short-term memory in an object recognition task, whether the effects depend on circadian rhythm and if exogenous augmentation of anandamide levels could restore any observed impairment. Two separate cohorts of male adult Sprague-Dawley rats were tested at two different times of the day, morning (inactivity phase) or afternoon (before the onset of the activity phase) in an object recognition task. The anandamide hydrolysis inhibitor URB597 was intraperitoneally administered immediately after the training trial. Rats were thereafter subjected to a forced swim stress under low or high stress conditions and tested 1 h after training. Control rats underwent the same experimental procedure except for the forced swim stress (no stress). We further investigated whether URB597 administration might modulate corticosterone release in rats subjected to the different stress conditions, both in the morning or afternoon. The low stressor elevated plasma corticosterone levels and impaired 1 h recognition memory performance when animals were tested in the morning. Exposure to the higher stress condition elevated plasma corticosterone levels and impaired memory performance, independently of the testing time. These findings show that stress impairing effects on short-term recognition memory are dependent on the intensity of stress and circadian rhythm. URB597 (0.3 mg kg-1) rescued the altered memory performance and decreased corticosterone levels in all the impaired groups yet leaving memory unaltered in the non-impaired groups.


Subject(s)
Arachidonic Acids/pharmacology , Circadian Rhythm/drug effects , Endocannabinoids/pharmacology , Memory, Short-Term/drug effects , Polyunsaturated Alkamides/pharmacology , Animals , Arachidonic Acids/metabolism , Arousal/physiology , Benzamides/pharmacology , Carbamates/pharmacology , Corticosterone/analysis , Corticosterone/blood , Emotions/physiology , Endocannabinoids/metabolism , Male , Polyunsaturated Alkamides/metabolism , Rats , Rats, Sprague-Dawley , Stress, Psychological/psychology
8.
Proc Natl Acad Sci U S A ; 115(30): 7795-7800, 2018 07 24.
Article in English | MEDLINE | ID: mdl-29987025

ABSTRACT

Brain systems underlying human memory function have been classically investigated studying patients with selective memory impairments. The discovery of rare individuals who have highly superior autobiographical memory (HSAM) provides, instead, an opportunity to investigate the brain systems underlying enhanced memory. Here, we carried out an fMRI investigation of a group of subjects identified as having HSAM. During fMRI scanning, eight subjects with HSAM and 21 control subjects were asked to retrieve autobiographical memories (AMs) as well as non-AMs (e.g., examples of animals). Subjects were instructed to signal the "access" to an AM by a key press and to continue "reliving" it immediately after. Compared with controls, individuals with HSAM provided a richer AM recollection and were faster in accessing AMs. The access to AMs was associated with enhanced prefrontal/hippocampal functional connectivity. AM access also induced increased activity in the left temporoparietal junction and enhanced functional coupling with sensory cortices in subjects with HSAM compared with controls. In contrast, subjects with HSAM did not differ from controls in functional activity during the reliving phase. These findings, based on fMRI assessment, provide evidence of interaction of brain systems engaged in memory retrieval and suggest that enhanced activity of these systems is selectively involved in enabling more efficient access to past experiences in HSAM.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Connectome , Magnetic Resonance Imaging , Memory/physiology , Adult , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...