Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Entropy (Basel) ; 26(9)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39330069

ABSTRACT

A multi-objective optimization is performed to obtain fueling conditions in hydrogen stations leading to improved filling times and thermodynamic efficiency (entropy production) of the de facto standard of operation, which is defined by the protocol SAE J2601. After finding the Pareto frontier between filling time and total entropy production, it was found that SAE J2601 is suboptimal in terms of these process variables. Specifically, reductions of filling time from 47 to 77% are possible in the analyzed range of ambient temperatures (from 10 to 40 °C) with higher saving potential the hotter the weather conditions. Maximum entropy production savings with respect to SAE J2601 (7% for 10 °C, 1% for 40 °C) demand a longer filling time that increases with ambient temperature (264% for 10 °C, 350% for 40 °C). Considering average electricity prices in California, USA, the operating cost of the filling process can be reduced between 8 and 28% without increasing the expected filling time.

SELECTION OF CITATIONS
SEARCH DETAIL