Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Main subject
Publication year range
1.
Rev Assoc Med Bras (1992) ; 69(2): 297-302, 2023.
Article in English | MEDLINE | ID: mdl-36888770

ABSTRACT

OBJECTIVES: The aim of this study was to examine the concurrent contributions of body size, estimates of whole-body composition, and appendicular volume in addition to participation in competitive basketball to explain inter-individual variance in anaerobic peak power output during late adolescence. The study also tested non-participation versus participation in basketball as an independent predictor of peak power output. METHODS: The sample of this cross-sectional study was composed of 63 male participants (basketball: n=32, 17.0±0.9 years; school: n=31, 17.4±1.0 years). Anthropometry included stature, body mass, circumferences, lengths, and skinfolds. Fat-free mass was estimated from skinfolds and lower limbs volume predicted from circumferences and lengths. Participants completed the force-velocity test using a cycle ergometer to determine peak power output. RESULTS: For the total sample, optimal peak power was correlated to body size (body mass: r=0.634; fat-free mass: r=0.719, lower limbs volume: r=0.577). The best model was given by fat-free mass and explained 51% of the inter-individual variance in force-velocity test. The preceding was independent of participating in sports (i.e., the dummy variable basketball vs. school did not add significant explained variance). CONCLUSION: Adolescent basketball players were taller and heavier than school boys. The groups also differed in fat-free mass (school: 53.8±4.8 kg; basketball: 60.4±6.7 kg), which was the most prominent predictor of inter-individual variance in peak power output. Briefly, compared to school boys, participation in basketball was not associated with optimal differential braking force. Higher values in peak power output for basketball players were explained by a larger amount of fat-free mass.


Subject(s)
Basketball , Humans , Male , Adolescent , Cross-Sectional Studies , Anaerobiosis , Body Size , Body Height
2.
Rev. Assoc. Med. Bras. (1992, Impr.) ; Rev. Assoc. Med. Bras. (1992, Impr.);69(2): 297-302, Feb. 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1422641

ABSTRACT

SUMMARY OBJECTIVES: The aim of this study was to examine the concurrent contributions of body size, estimates of whole-body composition, and appendicular volume in addition to participation in competitive basketball to explain inter-individual variance in anaerobic peak power output during late adolescence. The study also tested non-participation versus participation in basketball as an independent predictor of peak power output. METHODS: The sample of this cross-sectional study was composed of 63 male participants (basketball: n=32, 17.0±0.9 years; school: n=31, 17.4±1.0 years). Anthropometry included stature, body mass, circumferences, lengths, and skinfolds. Fat-free mass was estimated from skinfolds and lower limbs volume predicted from circumferences and lengths. Participants completed the force-velocity test using a cycle ergometer to determine peak power output. RESULTS: For the total sample, optimal peak power was correlated to body size (body mass: r=0.634; fat-free mass: r=0.719, lower limbs volume: r=0.577). The best model was given by fat-free mass and explained 51% of the inter-individual variance in force-velocity test. The preceding was independent of participating in sports (i.e., the dummy variable basketball vs. school did not add significant explained variance). CONCLUSION: Adolescent basketball players were taller and heavier than school boys. The groups also differed in fat-free mass (school: 53.8±4.8 kg; basketball: 60.4±6.7 kg), which was the most prominent predictor of inter-individual variance in peak power output. Briefly, compared to school boys, participation in basketball was not associated with optimal differential braking force. Higher values in peak power output for basketball players were explained by a larger amount of fat-free mass.

3.
Rev. bras. med. esporte ; Rev. bras. med. esporte;18(5): 305-307, set.-out. 2012. tab
Article in Portuguese | LILACS | ID: lil-658110

ABSTRACT

INTRODUÇÃO: O exercício estressante prolongado tem sido associado a uma depressão transitória da função imune, com rotinas de treinamento e competição intensas e prolongadas capazes de levar os atletas a uma deficiência imune. OBJETIVO: O objetivo deste estudo foi observar se o treinamento cr ônico foi capaz de produzir diferenças sustentáveis no sangue periférico (SP) subpopulações de leucócitos (LEU, granulócitos, monócitos, linfócitos totais, linfócitos B e T, e células CD4+ e CD8+T e células natural killers) de atletas de caiaque de elite quando comparados com não atletas. MÉTODOS: A amostra incluiu 13 homens atletas de caiaque de elite, 20 ± 3 anos, 75,0kg ± 7,9 peso e 177,3 ± 7,1 cm estatura. O VO2max foi 58,3 ± 7,8mL.kg.min-1. O grupo de não atletas incluiu sete homens saudáveis, idade 18 ± 1 ano de idade, 81,3 ± 13,8Kg de peso corporal e 171,9 ± 4,5cm de estatura. As amostras de sangue dos atletas foram coletadas no início da temporada de treinamento, após um período fora do treinamento de seis semanas. Populações de células sanguíneas periféricas foram identificadas por análise de citometria de fluxo. Para identificar as diferenças entre os grupos de atletas e não atletas, o teste U de Mann-Whitney foi utilizado. RESULTADOS: N ão foram identificadas diferenças entre os atletas de caiaque treinados e não atletas em repouso, exceto para células natural killers (CD3-CD56+) e os valores da subpopulação CD3-CD56+CD8+ os quais foram mais baixos nos atletas. CONCLUSÃO: Nosso estudo encontrou que, após um período prolongado sem treinamento (seis semanas), somente a população de NK CD3-CD56+ e, em especial, a subpopulação de altamente citotóxica CD3-CD56+CD8+ apresentou níveis mais baixos nos atletas de elite quando comparados com os homens destreinados.


INTRODUCTION: Prolonged strenuous exercise has been associated with a transient depression of immune function, with prolonged intense training schedules and competition able to lead to immune impairment in athletes. OBJETIVE: The objective of this study was to see if chronic training was able to produce sustained differences in the peripheral blood (PB) leukocyte subpopulations (WBC, granulocytes, monocytes, total lymphocytes, B and T lymphocytes, CD4+ and CD8+ T cells and Natural Killer cells) of elite kayakers when compared to non-athletes. METHODS: The sample comprised 13 elite male kayakers, 20 ± 3 years old, 75.0 kg ±7.9 weight and 177.3±7.1 cm stature. The VO2max was 58.3±7.8 mL.kg.min-1. The Non-athlete group comprised 7 health males, aged 18±1 years old, 81.3±13.8 kg of weight and 171.9±4.5cm stature. The athlete's blood samples were collected at the beginning of the training season, after an off period of six weeks of training. Peripheral blood cell populations were identified by flow cytometry analysis. To verify the differences between the athlete and non-athlete groups the Mann-Whitney U Test was used. RESULTS: No differences between the trained kayakers and the non-athletes were found at rest except for Natural Killer cells (CD3-CD56+) and the CD3-CD56+CD8+ subset values that were lower in the athletes. CONCLUSION: Our study found that after a prolonged time without training (six weeks) only the NK CD3-CD56+ population and particularly the highly cytotoxic CD3-CD56+CD8+ subpopulation had lower levels in the elite athletes when compared to the untrained men.

SELECTION OF CITATIONS
SEARCH DETAIL