Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Dent Mater ; 39(9): 807-819, 2023 09.
Article in English | MEDLINE | ID: mdl-37474437

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the influence of the sandblasting treatment on the microstructure, optical and mechanical properties of multi-layered translucent zirconia. METHODS: Samples of yttria-stabilized zirconia were prepared by stratifying four layers (L1, L2, L3 and L4) of ML-type KATANA multi-layered monolithic discs, whose surfaces were then sandblasted with alumina particles (110 µm and 0.2 MPa) in order to evaluate its effect on the presence of different crystalline phases as well as on the optical and mechanical properties of each of the four layers. The optical characterization was carried out by measuring the reflectance spectrum and colorimetric parameters by UV-Vis spectrophotometric analysis and the transmittance curves were indirectly obtained using the Kubelka-Munk model (KM). Microstructural, structural, mechanical and roughness characterizations were also performed using SEM, XRD, biaxial flexural strength B3B, and light interferometry, respectively RESULTS: According to the KM model there are different degrees of translucency between the upper and lower layers of the monolithic discs, but there was no influence of the Al2O3-sandblasting treatment on this optical property. The disk pigmentation causes greater absorption of light below 600 nm, decreasing the transmittance rate to values below 25% in this region of the spectrum. The yellowing index presented higher values for inner disk layers L3 and L4, in agreement with the highest values of the light absorption coefficient K observed for these layers. The roughness of the samples did not change significantly with the surface treatment performed and the sandblasting did not result in new crystalline phases. SEM analysis showed the presence of different grain sizes in all layers analyzed, being related to the co-occurring presence of cubic (c-ZrO2) and tetragonal (t-ZrO2) phases in similar contents (∼ 50 wt%). The Weibull statistical analysis, in turn, showed an increase in the Weibull characteristic stress value (σ0) for most layers subjected to sandblasting, except for the second layer (central region of the disk). It was also verified an increase in the value of the structural reliability of the material (m), referring to the samples of the central region of the disc (L2 and L3 layers) after sandblasting. SIGNIFICANCE: The pigmentation in the disk causes a decrease of the transmittance rate to values well below 25% in the region of the spectrum 400-600 nm and the inner layers (L3 and L4) have even lower transmittance than the outer layers in this spectrum range. Although the CR index indicates variation related to the Al2O3-sandblasting treatment, the transmittance spectra of KM model show that the sandblasting did not cause a significant change in the transmittance rate of the four analyzed layers. Also, there is no significant difference in the light scattering of the different layers of the disc, either before or after Al2O3-sandblasting treatment.


Subject(s)
Dental Materials , Zirconium , Dental Materials/chemistry , Materials Testing , Reproducibility of Results , Surface Properties , Zirconium/chemistry , Yttrium/chemistry , Ceramics
3.
Comput Biol Med ; 158: 106799, 2023 05.
Article in English | MEDLINE | ID: mdl-37028140

ABSTRACT

The post-genomic era has raised a growing demand for efficient procedures to identify protein functions, which can be accomplished by applying machine learning to the characteristics set extracted from the protein. This approach is feature-based and has been the focus of several works in bioinformatics. In this work, we investigated the characteristics of proteins, representing the primary, secondary, tertiary, and quaternary structures of the protein, that improve the model's quality by applying dimensionality reduction techniques and using the Support Vector Machine classifier for predicting the enzymes' classes. During the investigation, two approaches were evaluated: feature extraction/transformation, which was performed using the statistical technique Factor Analysis, and feature selection methods. For feature selection, we proposed an approach based on a genetic algorithm to face the optimization conflict between the simplicity and reliability of an ideal representation of the characteristics of the enzymes and also compared and employed other methods for this purpose. The best result was accomplished using a feature subset generated by our implementation of a multi-objective genetic algorithm enriched with features that this work identified as relevant to represent the enzymes. This subset representation reduced the dataset by about 87% and reached 85.78% of F-measure performance, improving the overall quality of the model classification. In addition, we verified in this work a subset addressed with only 28 features out of a total of 424 that reached a performance above 80% of F-measure for four of the six evaluated classes, showing that satisfactory classification performance can be achieved with a reduced number of enzymes's characteristics. The datasets and implementations are openly available.


Subject(s)
Machine Learning , Proteins , Reproducibility of Results , Computational Biology , Genomics , Support Vector Machine , Algorithms
4.
Nat Commun ; 12(1): 4666, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34344880

ABSTRACT

Integration of solid-state microchips into soft-matter, and stretchable printed electronics has been the biggest challenge against their scalable fabrication. We introduce, Pol-Gel, a simple technique for self-soldering, self-encapsulation, and self-healing, that allows low cost, scalable, and rapid fabrication of hybrid microchip-integrated ultra-stretchable circuits. After digitally printing the circuit, and placing the microchips, we trigger a Polymer-Gel transition in physically cross-linked block copolymers substrate, and silver liquid metal composite ink, by exposing the circuits to the solvent vapor. Once in the gel state, microchips penetrate to the ink and the substrate (Self-Soldering), and the ink penetrates to the substrate (Self-encapsulation). Maximum strain tolerance of ~1200% for printed stretchable traces, and >500% for chip-integrated soft circuits is achieved, which is 5x higher than the previous works. We demonstrate condensed soft-matter patches and e-textiles with integrated sensors, processors, and wireless communication, and repairing of a fully cut circuits through Pol-Gel.

5.
J Am Heart Assoc ; 9(15): e016654, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32715839

ABSTRACT

Background The usual approach to epicardial access in patients with Chagas cardiomyopathy and megacolon is surgical access to avoid bowel injury. However, there are concerns regarding its safety in cases of Chagas cardiomyopathy with reports of prolonged mechanical ventilation and high mortality in this clinical setting. The aim of this study was to examine feasibility and complication rates for ventricular tachycardia ablation performed with laparoscopic-guided epicardial access. Methods and Results This single center study examined complication rates of the first 11 cases of ventricular tachycardia ablation in patients with Chagas cardiomyopathy, using laparoscopic guidance to access epicardial space. All 11 patients underwent epicardial VT ablation using laparoscopic-guided epicardial access, and the complication rates were compared with historical medical reports. The main demographic features of our population were age, 63±13 years; men, 82%; and median ejection fraction, 31% (Q1=30% and Q3=46%). All patients were sent for ventricular tachycardia ablation because of medical therapy failure. The reason for laparoscopy was megacolon in 10 patients and massive liver enlargement in 1 patient. Epicardial access was achieved in all patients. Complications included 1 severe cardiogenic shock and 1 phrenic nerve paralysis. No intra-abdominal organ injury occurred; only 1 death, which was caused by progressive heart failure, was reported more than 1 month after the procedure. Conclusions Laparoscopic-guided epicardial access in the setting of ventricular tachycardia ablation and enlarged intra-abdominal organ is a simple alternative to more complex surgical access and can be performed with low complication rates.


Subject(s)
Ablation Techniques/methods , Chagas Disease/complications , Tachycardia, Ventricular/surgery , Aged , Feasibility Studies , Female , Humans , Laparoscopy , Male , Middle Aged , Tachycardia, Ventricular/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...