Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Inst Mech Eng H ; 236(1): 72-83, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34546141

ABSTRACT

Chronic otitis media enables the appearance of a benign middle ear tumor, known as a cholesteatoma, that may compromise hearing. To evaluate the influence of a cholesteatoma growth on the hearing function, a computational middle ear model based on the finite element method was used and three different size of cholesteatoma were modeled. The cholesteatoma solidification and the consequent degradation of the ossicles were also simulated as two condition that commonly occurs during cholesteatoma evolution. A sound pressure level of 80 dB SPL was applied in the tympanic membrane and a steady state analysis was performed for frequencies from 100 Hz to 10 kHz. The displacements of both the tympanic membrane and the stapes footplate were measured. The results were compared with a healthy case and it was shown that the cholesteatoma development leads to a decrease in the umbo and stapes displacements. The ossicles degradation simulation showed the higher difference comparing with the cholesteatoma in an initial stage, with lower displacements in the stapes footplate mainly for high frequencies. The observed displacement differences are directly connected to hearing loss, being possible to conclude that cholesteatoma evolution in the middle ear will lead to hearing problems, mainly in an advanced stage.


Subject(s)
Cholesteatoma , Ear, Middle , Hearing , Humans , Stapes , Tympanic Membrane
2.
Comput Methods Biomech Biomed Engin ; 21(6): 461-469, 2018 May.
Article in English | MEDLINE | ID: mdl-30010395

ABSTRACT

Vertiginous symptoms are one of the most common symptoms in the world, therefore investing in new ways and therapies to avoid the sense of insecurity during the vertigo episodes is of great interest. The classical maneuvers used during vestibular rehabilitation consist in moving the head in specific ways, but it is not fully understood why those steps solve the problem. To better understand this mechanism, a three-dimensional computational model of the semicircular ducts of the inner ear was built using the finite element method, with the simulation of the fluid flow being obtained using particle methods. To simulate the exact movements performed during rehabilitation, data from an accelerometer were used as input for the boundary conditions in the model. It is shown that the developed model responds to the input data as expected, and the results successfully show the fluid flow of the endolymph behaving coherently as a function of accelerometer data. Numerical results at specific time steps are compared with the corresponding head movement, and both particle velocity and position follow the pattern that would be expected, confirming that the model is working as expected. The vestibular model built is an important starting point to simulate the classical maneuvers of the vestibular rehabilitation allowing to understand what happens in the endolymph during the rehabilitation process, which ultimately may be used to improve the maneuvers and the quality of life of patients suffering from vertigo.


Subject(s)
Accelerometry/instrumentation , Computer Simulation , Endolymph/physiology , Vertigo/rehabilitation , Vestibule, Labyrinth/physiopathology , Finite Element Analysis , Humans , Models, Biological , Quality of Life , Semicircular Canals/physiopathology
3.
Acta Bioeng Biomech ; 19(1): 3-15, 2017.
Article in English | MEDLINE | ID: mdl-28552920

ABSTRACT

PURPOSE: The vestibular system is the part of the inner ear responsible for balance. Vertigo and dizziness are generally caused by vestibular disorders and are very common symptoms in people over 60 years old. One of the most efficient treatments at the moment is vestibular rehabilitation, permitting to improve the symptoms. However, this rehabilitation therapy is a highly empirical process, which needs to be enhanced and better understood. METHODS: This work studies the vestibular system using an alternative computational approach. Thus, part of the vestibular system is simulated with a three dimensional numerical model. Then, for the first time using a combination of two discretization techniques (the finite element method and the smoothed particle hydrodynamics method), it is possible to simulate the transient behavior of the fluid inside one of the canals of the vestibular system. RESULTS: The obtained numerical results are presented and compared with the available literature. The fluid/solid interaction in the model occurs as expected with the methods applied. The results obtained with the semicircular canal model, with the same boundary conditions, are similar to the solutions obtained by other authors. CONCLUSIONS: The numerical technique presented here represents a step forward in the biomechanical study of the vestibular system, which in the future will allow the existing rehabilitation techniques to be improved.


Subject(s)
Endolymph/physiology , Models, Biological , Rheology/methods , Semicircular Canals/anatomy & histology , Semicircular Canals/physiology , Computer Simulation , Elastic Modulus/physiology , Finite Element Analysis , Humans , Hydrodynamics , Imaging, Three-Dimensional , Numerical Analysis, Computer-Assisted , Pressure , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...