Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Funct Biomater ; 14(9)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37754877

ABSTRACT

This research investigates pH changes during the green synthesis of ZnO nanoparticles (NPs) and emphasises its importance in their physicochemical, antibacterial, and biological properties. Varying the synthesis pH from 8 to 12 using "Bravo de Esmolfe" apple extracts neither affected the morphology nor crystallinity of ZnO but impacted NP phytochemical loads. This difference is because alkaline hydrolysis of phytochemicals occurred with increasing pH, resulting in BE-ZnO with distinct phytocargos. To determine the toxicity of BE-ZnO NPs, Galleria mellonella was used as an alternative to non-rodent models. These assays showed no adverse effects on larvae up to a concentration of 200 mg/kg and that NPs excess was relieved by faeces and silk fibres. This was evaluated by utilising fluorescence-lifetime imaging microscopy (FLIM) to track NPs' intrinsic fluorescence. The antibacterial efficacy against Staphylococcus aureus was higher for BE-ZnO12 than for BE-ZnO8; however, a different trend was attained in an in vivo infection model. This result may be related to NPs' residence in larvae haemocytes, modulated by their phytocargos. This research demonstrates, for the first time, the potential of green synthesis to modulate the biosafety and antibacterial activity of NPs in an advanced G. mellonella infection model. These findings support future strategies to overcome antimicrobial resistance by utilizing distinct phytocargos to modulate NPs' action over time.

2.
Biology (Basel) ; 11(10)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36290328

ABSTRACT

Toxin-producing microalgae present a significant environmental risk for ecosystems and human societies when they reach concentrations that affect other aquatic organisms or human health. Harmful algal blooms (HAB) have been linked to mass wildlife die-offs and human food poisoning episodes, and climate change has the potential to alter the frequency, magnitude, and geographical extent of such events. Thus, a framework of species distribution models (SDMs), employing MaxEnt modeling, was used to project changes in habitat suitability and distribution of three key paralytic shellfish toxin (PST)-producing dinoflagellate species (i.e., Alexandrium catenella, A. minutum, and Gymnodinium catenatum), up to 2050 and 2100, across four representative concentration pathway scenarios (RCP-2.6, 4.5, 6.0, and 8.5; CMIP5). Despite slightly different responses at the regional level, the global habitat suitability has decreased for all the species, leading to an overall contraction in their tropical and sub-tropical ranges, while considerable expansions are projected in higher latitudes, particularly in the Northern Hemisphere, suggesting poleward distributional shifts. Such trends were exacerbated with increasing RCP severity. Yet, further research is required, with a greater assemblage of environmental predictors and improved occurrence datasets, to gain a more holistic understanding of the potential impacts of climate change on PST-producing species.

3.
Colloids Surf B Biointerfaces ; 217: 112643, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35759895

ABSTRACT

The development of nanoparticles as antimicrobial agents against pathogenic bacteria has emerged as one of the leading global healthcare challenges. In this study, Mg(OH)2 NPs with controlled morphology and nanometric size, using two distinct counterions, chloride or nitrate, have been synthesized using Rosehip (RH) extract that has privileges beyond conventional chemical and physical methods. Various physicochemical techniques were used to characterize the RH-functionalized Mg-based NPs. They exhibited a spherical shape with a diameter of ~10 nm, low crystallinity compared to non-functionalized NPs, high polyphenol content, and negative zeta potential in three different media (H2O, TSB, and cell medium). The resulting RH-functionalized Mg-based NPs also exhibited an increased antibacterial activity against Gram-positive (S. Epidermis and S. aureus) and Gram-negative (E. Coli) bacteria compared to those prepared in pure water (0 % RH), an effect that was well evident with low NPs contents (250 µg/mL). A preliminary attempt to elucidate their mechanism of action revealed that RH-functionalized Mg-based NPs could disrupt cellular structures (bacterial cell wall and cytoplasmic membrane) and damage the bacterial cell, as confirmed by TEM imaging. Noteworthy is that Mg-based NPs exhibited higher toxicity to bacteria than to eukaryotic cells. More significantly, was their enhanced in vivo efficacy in a Galleria mellonella invertebrate animal model, when infected with S. aureus bacteria. Overall, our findings indicate that well-engineered Rosehip magnesium-based nanoparticles can be used as a green non-cytotoxic polyphenolic source in different antibacterial applications for the biomedical industry.


Subject(s)
Metal Nanoparticles , Rosa , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Bacteria , Escherichia coli , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Plant Extracts/chemistry , Plant Extracts/pharmacology , Staphylococcus aureus
4.
Int J Pharm ; 593: 120097, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33217547

ABSTRACT

Polymeric platforms obtained by three-dimensional (3D) printing are becoming increasingly important as multifunctional therapeutic systems for bone treatment applications. In particularly, researchers aim to control bacterial biofilm on these 3D-platforms and enhance re-growing bone tissue, at the same time. This study aimed to fabricate a 3D-printed polylactic acid platform loaded with hydroxyapatite (HA), iron oxide nanoparticles (IONPs) and an antibiotic (minocycline) with tuneable properties and multistimuli response. IONPs were produced by a facile chemical co-precipitation method showing an average diameter between 11 and 15 nm and a superparamagnetic behaviour which was preserved when loaded into the 3D-platforms. The presence of two types of nanoparticles (IONPs and HA) modify the nanomorphological/nanotopographical feature of the 3D-platforms justifying their adequate bioactivity profile and in vitro cellular effects on immortalized and primary osteoblasts, including cytocompatibility and increased osteogenesis-related gene expression (RUNX2, BGLAP and SPP1). Disk diffusion assays and SEM analysis confirmed the effect of the 3D-platforms loaded with minocycline against Staphylococcus aureus. Altogether results showed that fabricated 3D-platforms combined the exact therapeutic antibiofilm dose of the antibiotic against S. aureus, with the enhanced osteogenic stimulation of the HA and IONPs nanoparticles which is a disruptive approach for bone targeting applications.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Anti-Bacterial Agents/pharmacology , Bone Regeneration , Bone and Bones , Osteogenesis , Printing, Three-Dimensional , Staphylococcus aureus , Tissue Scaffolds
5.
Mater Sci Eng C Mater Biol Appl ; 115: 111147, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32600733

ABSTRACT

The development of biomaterials that mimicking the hydroxyapatite nanoparticles existent in the immature bone tissue is crucial, especially to accelerate the bone remodeling and regeneration. In this work, it was developed for the first time, hydroxyapatite nanoparticles (NPs) incorporating citrate and zinc (cit-Zn-Hap) in their composition towards a one-step hydrothermal procedure. For comparison purposes, hydroxyapatite NPs incorporating only zinc (Zn-Hap) or citrate (cit-Hap), as well as hydroxyapatite without any of these elements (Hap) were synthesised. The physicochemical characterization was carried out reveling that, the presence of zinc on hydroxyapatite (cit-Zn-Hap), reduced the size of nanoparticles, changed the phosphate environment and decreased the surface charge when compared with cit-Hap nanoparticles. The osteogenic potential of cit-Zn-Hap NPs was analysed in human bone marrow-derived stromal cells (BMSCs), in the absence of osteoinductive factors. NPs were internalized by endocytosis appearing trapped in endosomes and lysosomes scattered through the cytoplasm. Exposure to these NPs resulted in a significant induction of ALP activity, extracellular matrix mineralization, and gene expression of early and later osteogenic transcription factors, as well as of osteoblastic markers. The osteoinductive effect might be regulated, at least in part, by the increased signalling through the canonical WNT pathway. Evaluation of the cell behaviour following exposure to Zn-Hap and cit-Hap strongly suggested a synergistic effect of citrate and Zn in cit-Zn-Hap NPs towards the induction of the osteogenic commitment and functionality of BMSCs. These findings will allow the design of new biomimetic hydroxyapatite nanoparticles with great potential for bone regeneration.


Subject(s)
Bone Regeneration/drug effects , Durapatite/pharmacology , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Cells, Cultured , Citrates/chemistry , Durapatite/chemistry , Gene Expression Regulation/drug effects , Humans , Mesenchymal Stem Cells/cytology , Nanotubes , Particle Size , Zinc/chemistry
6.
Colloids Surf B Biointerfaces ; 191: 110990, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32240920

ABSTRACT

Zinc coated with nanostructured ZnO flowers has received increasing attention as a versatile biomaterial for medical applications. Whatsoever, the potential of these materials to meet specific medical requirements must be explored. Despite in its infancy, surface functionalization is the key strategy to achieve this goal. The functionalization, successfully achieved with cooper (Cu), iron (Fe) or manganese (Mn) oxides (Ox), was highly dependent on the presence of the flowered structures, with the deep physicochemical characterization of these new surfaces revealing specific metal oxide distributions. The functionalization with these metal oxides resulted in distinct biological and in vitro behaviours. The biological response, assessed by fibroblast viability, hemocompatibility, and chick chorioallantoic membrane (CAM), further supported by the in vitro degradation studies, evaluated by immersion and electrochemical techniques, revealed that the deleterious role of CuOx functionalization brought potential for anti-cancer applications; with an antagonist behaviour, the functionalization with MnOx, and in a less extent with FeOx, can be used to favour wound healing in traumatic processes. Despite the possible correlation between biocompatibility and hydroxyapatite precipitation, no correlation could be drawn with the corrosion activity of these surfaces. Overall, the minor addition of relevant physiological as Cu, Fe or Mn oxides resulted in antagonist in vitro responses that can be used as expedite strategies to modulate the behaviour of Zn-based materials, contributing in this way for the design of anti-cancer or wound healing therapies.


Subject(s)
Chorioallantoic Membrane/drug effects , Coated Materials, Biocompatible/administration & dosage , Fibroblasts/drug effects , Hemolysis/drug effects , Manganese Compounds/chemistry , Oxides/chemistry , Zinc Oxide/chemistry , Animals , Coated Materials, Biocompatible/chemistry , Copper/chemistry , Fibroblasts/cytology , Humans , Iron/chemistry , Materials Testing , Mice
7.
Int J Pharm ; 572: 118821, 2019 Dec 15.
Article in English | MEDLINE | ID: mdl-31711981

ABSTRACT

Periodontal diseases remain a challenge due to a complex interplay of factors involving a chronic inflammatory activation and bacteria internalization in periodontal cells. In this work, chitosan-nanoparticles loaded with minocycline (MH-NPs), a tetracycline with antimicrobial and anti-inflammatory effects, were developed for in situ delivery in the periodontal milieu aiming to improve drug effectiveness. A general cytocompatibility evaluation and a detailed approach to address the cellular uptake process, trafficking pathways and the modulation of relevant inflammatory gene expression was conducted using human gingival fibroblasts. Results show that MH-NPs with an adequate cytocompatible profile can be internalized by distinct endocytic processes (macropinocytosis and clathrin-mediated endocytosis). The ability to modulate autophagy with the delivery within the same endosomal/lysosomal pathway as periodontal pathogens was observed, which increases the intracellular drug effectiveness. Porphyromonas gingivalis LPS-stimulated cultures, grown in the presence of MH-NPs, were found to express significantly reduced levels of inflammation-related markers (IL-1b, TNFα, CXCL-8, NFKB1). These nanoparticles can be potentially used in periodontal disease treatment conjoining the ability of intracellular drug targeting with significant anti-inflammatory effects.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Anti-Inflammatory Agents/administration & dosage , Chitosan/chemistry , Minocycline/administration & dosage , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Drug Delivery Systems , Fibroblasts/drug effects , Fibroblasts/pathology , Gingiva/cytology , Gingiva/drug effects , Gingiva/microbiology , Humans , Inflammation/drug therapy , Inflammation/pathology , Minocycline/pharmacology , Nanoparticles , Periodontal Diseases/drug therapy , Porphyromonas gingivalis/drug effects
8.
Mater Sci Eng C Mater Biol Appl ; 101: 15-26, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31029308

ABSTRACT

3D-printing and additive manufacturing can be powerful techniques to design customized structures and produce synthetic bone grafts with multifunctional effects suitable for bone repair. In our work we aimed the development of novel multifunctionalized 3D printed poly(lactic acid) (PLA) scaffolds with bioinspired surface coatings able to reduce bacterial biofilm formation while favoring human bone marrow-derived mesenchymal stem cells (hMSCs) activity. For that purpose, 3D printing was used to prepare PLA scaffolds that were further multifunctionalized with collagen (Col), minocycline (MH) and bioinspired citrate- hydroxyapatite nanoparticles (cHA). PLA-Col-MH-cHA scaffolds provide a closer structural support approximation to native bone architecture with uniform macroporous, adequate wettability and an excellent compressive strength. The addition of MH resulted in an adequate antibiotic release profile that by being compatible with local drug delivery therapy was translated into antibacterial activities against Staphylococcus aureus, a main pathogen associated to bone-related infections. Subsequently, the hMSCs response to these scaffolds revealed that the incorporation of cHA significantly stimulated the adhesion, proliferation and osteogenesis-related gene expression (RUNX2, OCN and OPN) of hMSCs. Furthermore, the association of a bioinspired material (cHA) with the antibiotic MH resulted in a combined effect of an enhanced osteogenic activity. These findings, together with the antibiofilm activity depicted strengthen the appropriateness of this 3D-printed PLA-Col-MH-cHA scaffold for future use in bone repair. By targeting bone repair while mitigating the typical infections associated to bone implants, our 3D scaffolds deliver an integrated strategy with the combined effects further envisaging an increase in the success rate of bone-implanted devices.


Subject(s)
Bone Regeneration/drug effects , Collagen/pharmacology , Durapatite/pharmacology , Minocycline/pharmacology , Nanoparticles/chemistry , Polyesters/pharmacology , Printing, Three-Dimensional , Tissue Engineering/methods , Adsorption , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Drug Liberation , Gene Expression Regulation/drug effects , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/ultrastructure , Microbial Sensitivity Tests , Osseointegration/drug effects , Osteogenesis/drug effects , Osteogenesis/genetics , Staphylococcus aureus/drug effects , Tissue Scaffolds/chemistry
9.
ACS Appl Mater Interfaces ; 9(34): 28157-28167, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28782933

ABSTRACT

ZnO nanoparticles (NPs) are arising as promising novel antibiotics toward device-related infections. The surface functionalization of Zn, a novel resorbable biomaterial, with ZnO NPs could present an effective solution to overcome such a threat. In this sense, the antibacterial and antibiofilm activity of nano- and microsized ZnO coatings was studied against clinically relevant bacteria, methicillin resistant Staphylococcus aureus (MRSA). The bacterial viability of planktonic and biofilm cells together with the corresponding biofilm structures revealed that only the nanosized ZnO coating had an antibiofilm effect. To elucidate this effect, a novel approach was taken: preconditioning of bacteria with this ZnO coating followed by exposure to subinhibitory concentrations of antibiotics with well-known modes of actions. This approached revealed (i) a decreased biofilm formation in combination with gentamycin, targeting protein synthesis, and (ii) an increased biofilm formation in the presence of rifampicin and vancomycin, acting on RNA and cell wall biosynthesis, respectively. The increased bacteria resistance to these two antibiotics gave new insights into the antibiofilm effect of this nanosized ZnO coating. The synergistic effect observed for gentamycin opened new perspectives for the design of effective solutions against implant-related infections. During the in vitro degradation of this nanosized ZnO-coated Zn, a specific corrosion product, hopeite [Zn3(PO4)2], was depicted. Interestingly, the increased deposition of hopeite-derived compounds on MRSA cells surface seemed to be related to unhealthy and dead bacterial cells. This observation suggested that hopeite may well play a key role in this antibiofilm activity. The results obtained herein shed light on the possible antibacterial effect of a nanosized ZnO coating, and strengthened its antimicrobial (antibacterial and antifungal) potential, therefore providing a potentially effective material to overcome the growing trend of implant-related infections.


Subject(s)
Zinc Oxide/chemistry , Anti-Bacterial Agents , Biofilms , Methicillin , Methicillin-Resistant Staphylococcus aureus , Microbial Sensitivity Tests , Vancomycin
10.
Mater Sci Eng C Mater Biol Appl ; 70(Pt 1): 112-120, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27770870

ABSTRACT

Flowered coatings composed by ZnO crystals were successfully electrodeposited on Zn-Mg alloys. The distinct coatings morphologies were found to be dependent upon the solid interfaces distribution, with the smaller number of bigger flowers (ø 46µm) obtained on Zn-Mg alloy containing 1wt.% Mg (Zn-1Mg) contrasting with the higher number of smaller flowers (ø 38µm) achieved on Zn-Mg alloy with 2wt.% Mg (Zn-2Mg). To assess the in vitro behaviour of these novel resorbable materials, a detailed evaluation of the degradation behaviour, in simulated physiological conditions, was performed by electrochemical impedance spectroscopy (EIS). The opposite behaviours observed in the corrosion resistances resulted in the build-up of distinct corrosion layers. The products forming these layers, preferentially detected at the flowers, were identified and their spatial distribution disclosed by EDS and Raman spectroscopy techniques. The presence of smithsonite, simonkolleite, hydrozincite, skorpionite and hydroxyapatite were assigned to both corrosion layers. However the distinct spatial distributions depicted may impact the biocompatibility of these resorbable materials, with the bone analogue compounds (hydroxyapatite and skorpionite) depicted in-between the ZnO crystals and on the top corrosion layer of Zn-1Mg flowers clearly contrasting with the hindered layer formed at the interface of the substrate with the flowers on Zn-2Mg.


Subject(s)
Alloys/chemistry , Coated Materials, Biocompatible/chemistry , Magnesium/chemistry , Zinc Oxide/chemistry , Zinc/chemistry , Corrosion , Dielectric Spectroscopy , Electroplating , Spectrometry, X-Ray Emission , Spectrum Analysis, Raman
11.
J Mater Chem B ; 4(27): 4754-4761, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-32263249

ABSTRACT

Rejection and colonization by microbes are two problematic issues that often require the surgical removal of medical implants with increased risks for patients. In this work it is shown that functionalization of Zn surfaces with ZnO-nanostructured 'Anastacia' flowers (NAF) resulted in improved biomaterials that can potentially overcome these important drawbacks, which can further boost the use of Zn in biomedical implants. The in vitro degradation of NAF-coated Zn under simulated physiological conditions resulted in the formation of a biomimetic corrosion layer rich in a hydroxyapatite analogue that, being an important bone component, may potentially decrease implant rejection. Colonization of the NAF-coated Zn surface by Candida parapsilosis and Candida albicans, two of the more relevant microbial species colonizing medical devices, was significantly reduced on the NAF-coated Zn surface. The mechanism by which this colonization inhibition occurred was distinct since for C. parapsilosis cells this was attributed to reduced cell viability, while for C. albicans the reduced colonization was related to impaired biofilm formation. This ZnO-derived coating is an expeditious strategy to improve the resilience of Zn-based resorbable biomaterials towards Candida spp. colonization, paving the way for the design of bioactive ZnO-derived coatings with potential for clinical applications on bone.

SELECTION OF CITATIONS
SEARCH DETAIL
...