Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 194(12): 3199-215, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22505676

ABSTRACT

Corynebacterium diphtheriae is one of the most prominent human pathogens and the causative agent of the communicable disease diphtheria. The genomes of 12 strains isolated from patients with classical diphtheria, endocarditis, and pneumonia were completely sequenced and annotated. Including the genome of C. diphtheriae NCTC 13129, we herewith present a comprehensive comparative analysis of 13 strains and the first characterization of the pangenome of the species C. diphtheriae. Comparative genomics showed extensive synteny and revealed a core genome consisting of 1,632 conserved genes. The pangenome currently comprises 4,786 protein-coding regions and increases at an average of 65 unique genes per newly sequenced strain. Analysis of prophages carrying the diphtheria toxin gene tox revealed that the toxoid vaccine producer C. diphtheriae Park-Williams no. 8 has been lysogenized by two copies of the ω(tox)(+) phage, whereas C. diphtheriae 31A harbors a hitherto-unknown tox(+) corynephage. DNA binding sites of the tox-controlling regulator DtxR were detected by genome-wide motif searches. Comparative content analysis showed that the DtxR regulons exhibit marked differences due to gene gain, gene loss, partial gene deletion, and DtxR binding site depletion. Most predicted pathogenicity islands of C. diphtheriae revealed characteristics of horizontal gene transfer. The majority of these islands encode subunits of adhesive pili, which can play important roles in adhesion of C. diphtheriae to different host tissues. All sequenced isolates contain at least two pilus gene clusters. It appears that variation in the distributed genome is a common strategy of C. diphtheriae to establish differences in host-pathogen interactions.


Subject(s)
Corynebacterium diphtheriae/genetics , Corynebacterium diphtheriae/isolation & purification , Diphtheria/microbiology , Endocarditis, Bacterial/microbiology , Genetic Variation , Genome, Bacterial , Pneumonia, Bacterial/microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Deletion , Gene Transfer, Horizontal , Genes, Bacterial , Genomic Islands , Glycolipids/genetics , Humans , Molecular Sequence Data , Mutagenesis, Insertional , Prophages/genetics , Regulon , Sequence Analysis, DNA
2.
BMC Genomics ; 12: 383, 2011 Jul 30.
Article in English | MEDLINE | ID: mdl-21801446

ABSTRACT

BACKGROUND: Corynebacterium ulcerans has been detected as a commensal in domestic and wild animals that may serve as reservoirs for zoonotic infections. During the last decade, the frequency and severity of human infections associated with C. ulcerans appear to be increasing in various countries. As the knowledge of genes contributing to the virulence of this bacterium was very limited, the complete genome sequences of two C. ulcerans strains detected in the metropolitan area of Rio de Janeiro were determined and characterized by comparative genomics: C. ulcerans 809 was initially isolated from an elderly woman with fatal pulmonary infection and C. ulcerans BR-AD22 was recovered from a nasal sample of an asymptomatic dog. RESULTS: The circular chromosome of C. ulcerans 809 has a total size of 2,502,095 bp and encodes 2,182 predicted proteins, whereas the genome of C. ulcerans BR-AD22 is 104,279 bp larger and comprises 2,338 protein-coding regions. The minor difference in size of the two genomes is mainly caused by additional prophage-like elements in the C. ulcerans BR-AD22 chromosome. Both genomes show a highly similar order of orthologous coding regions; and both strains share a common set of 2,076 genes, demonstrating their very close relationship. A screening for prominent virulence factors revealed the presence of phospholipase D (Pld), neuraminidase H (NanH), endoglycosidase E (EndoE), and subunits of adhesive pili of the SpaDEF type that are encoded in both C. ulcerans genomes. The rbp gene coding for a putative ribosome-binding protein with striking structural similarity to Shiga-like toxins was additionally detected in the genome of the human isolate C. ulcerans 809. CONCLUSIONS: The molecular data deduced from the complete genome sequences provides considerable knowledge of virulence factors in C. ulcerans that is increasingly recognized as an emerging pathogen. This bacterium is apparently equipped with a broad and varying set of virulence factors, including a novel type of a ribosome-binding protein. Whether the respective protein contributes to the severity of human infections (and a fatal outcome) remains to be elucidated by genetic experiments with defined bacterial mutants and host model systems.


Subject(s)
Corynebacterium/genetics , Genomics , Virulence Factors/genetics , Aged , Amino Acid Sequence , Animals , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Dogs , Female , Gene Order , Genome, Bacterial/genetics , Humans , Models, Molecular , Molecular Sequence Data , Prophages/genetics , Protein Conformation , Virulence Factors/chemistry
3.
J Med Microbiol ; 58(Pt 11): 1419-1427, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19628642

ABSTRACT

Corynebacterium diphtheriae still represents a global medical challenge, particularly due to the significant number of individuals susceptible to diphtheria and the emergence of non-toxigenic strains as the causative agents of invasive infections. In this study, we characterized the clinical and microbiological features of what we believe to be the first case of C. diphtheriae infection of a percutaneous nephrostomy catheter insertion site in an elderly patient with a fatal bladder cancer. Moreover, we demonstrated the potential role of adherence, biofilm formation and fibrin deposition traits in C. diphtheriae from the catheter-related infection. Non-toxigenic C. diphtheriae isolated from the purulent discharge (named strain BR-CAT5003748) was identified by the API Coryne system (code 1 010 324) and a multiplex PCR for detection of dtxR and tox genes. Strain BR-CAT5003748 showed resistance to oxacillin, ceftazidime and ciprofloxacin. In experiments performed in vitro, the catheter isolate was classified as moderately hydrophobic and as moderately adherent to polystyrene surfaces. Glass provided a more effective surface for biofilm formation than polystyrene. Micro-organisms adhered to (>1.5 x 10(6) c.f.u.) and multiplied on surfaces of polyurethane catheters. Microcolony formation (a hallmark of biofilm formation) and amorphous accretions were observed by scanning electron microscopy on both external and luminal catheter surfaces. Micro-organisms yielded simultaneous expression of localized adherence-like and aggregative-like (LAL/AAL) adherence patterns to HEp-2 cells. Interestingly, the coagulase tube test resulted in the formation of a thin layer of fibrin embedded in rabbit plasma by the non-toxigenic BR-CAT5003748 strain. In conclusion, C. diphtheriae should be recognized as a potential cause of catheter-related infections in at-risk populations such as elderly and cancer patients. LAL/AAL strains may be associated with virulence traits that enable C. diphtheriae to effectively produce biofilms on catheter surfaces. Biofilm formation and fibrin deposition could have contributed to the persistence of C. diphtheriae at the infected insertion site and the obstruction of the nephrostomy catheter.


Subject(s)
Catheter-Related Infections/microbiology , Corynebacterium diphtheriae/pathogenicity , Diphtheria/microbiology , Nephrostomy, Percutaneous/adverse effects , Aged , Bacterial Adhesion , Biofilms/growth & development , Catheters, Indwelling/microbiology , Cell Line , Corynebacterium diphtheriae/classification , Corynebacterium diphtheriae/genetics , Corynebacterium diphtheriae/isolation & purification , Fatal Outcome , Fibrin/metabolism , Humans , Male , Polyurethanes , Urinary Bladder Neoplasms/therapy , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...