Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Parasitol ; 327: 110137, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38278036

ABSTRACT

The ANESPSAT, a synthetic spilanthol derivative, and its nanoformulation were evaluated against Rhipicephalus microplus and Amblyomma sculptum ticks. ANESPSAT activity was compared with spilanthol and derivatives (ANESPE and others). The compound was synthesized in a gram-scale by a 2-step process, comprising a direct ester amidation and a Horner-Wadsworth- Emmons reaction. The nanoemulsions were produced by coarse homogenization followed by high-energy ultrasonication, in which hydrodynamic diameter, polydispersity index, and zeta potential remained stable. The spilanthol-eugenol hybrid derivatives did not show significant acaricidal activity. ANESPE killed 83% of the R. microplus larvae at 30 mg.mL-1, while ANESPSAT killed 97% at 0.5 mg.mL-1, showing to be the most active compound. Spilanthol and ANESPSAT had similar high mortality rates for tick larvae, with LC50 values of 0.10 and 0.14 mg.mL-1 for R. microplus larvae, and 0.04 and 0.48 mg.mL-1 for A. sculptum larvae, respectively. The efficacy of spilanthol was lower against R. microplus engorged females when compared with ANESPSAT, which was highly effective (>98%) against R. microplus engorged females. The nanoemulsion with ANESPSAT was effective against tick females, preventing egg laying and achieving 100% efficacy at 2.5 mg.mL-1. Spilanthol had only 59% efficacy at 10 mg.mL-1. The results suggest that ANESPSAT, a natural product derivative, could be used in novel formulations for tick management that might be safer and environmentally friendly.


Subject(s)
Acaricides , Rhipicephalus , Female , Animals , Acaricides/pharmacology , Polyunsaturated Alkamides , Larva
2.
Carbohydr Polym ; 250: 116891, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33049828

ABSTRACT

We propose a novel approach relied on high-resolution solid-state 13C NMR spectroscopy to quantify the crystallinity index of chitosans (Ch) prepared with variable average degrees of acetylation (DA¯) from 5% to 60 % and average weight molecular weight (M¯w) ranged in 0.15 × 106 g mol-1-1.2 × 106 g mol-1. The Dipolar Chemical Shift Correlation (DIPSHIFT) curve of the C(6)OH segment revealed increased mobility dynamic, which induced different distribution from trans-to-gauche conformations in relation to C(4). Indeed, 1H-13C Heteronuclear Correlation (2D HETCOR) showed that distinguished C4 chemical shifts correlates with the same aliphatic protons. The short-range ordering can be assigned to C4/C6 signals on 13C CPMAS and, for our case, the deconvolution procedure between disordered and ordered phases revealed increasing crystallinity with DA¯, as confirmed by SVD multivariate analysis. This work extended the knowledge regarding the use of 13C CPMAS technique to predict the crystallinity of chitosans without the use of amorphous standards.

3.
Colloids Surf B Biointerfaces ; 175: 73-83, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30522010

ABSTRACT

In this paper, chitosan was used as protective agent for dual temperature-/pH-sensitive poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate)- based hydrogel nanoparticles (poly(NVCL-co-IA-co-EGDMA)) aiming avoid their undesirable colloidal destabilization at different conditions of body human tissues. Thus, poly(NVCL-co-IA-co-EGDMA) was embedded into chitosan and a new solid dispersion was prepared via spray-drying and ketoprofen was used as carrier. Two different sizes of hydrogel nanoparticles (120.6 nm and 185.9 nm) were evaluated and they exhibited a drug encapsulation efficiency of the 39.6% and 57.8%, respectively. The smaller nanoparticles showed to be faster for releasing of ketoprofen at pH 7.4 and 37 °C due to their larger surface area and higher swelling ability. Chitosan played a role of a secondary barrier for the ketoprofen diffusion, extending its release compared to hydrogel nanoparticles alone. Among two concentrations (40 wt% and 70 wt%) of hydrogel nanoparticles related to chitosan, the first one induced higher percentages of ketoprofen release: 74.2% against 64.6%. In addition, the interactions between chitosan matrix and poly(NVCL-co-IA-co-EGDMA) did not change the multi-responsive behavior of hydrogels, suggesting the chitosan was efficient for keeping integrity of nanoparticles hydrogels. Chitosan/poly(NVCL-co-IA-co-EGDMA) hybrid microparticles seems to be a promising new carrier for release of hydrophobic drugs, such as ketoprofen.


Subject(s)
Chitosan/chemistry , Drug Delivery Systems/methods , Hydrogels/chemistry , Ketoprofen/administration & dosage , Nanoparticles/chemistry , Polymers/chemistry , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Caprolactam/analogs & derivatives , Caprolactam/chemistry , Drug Carriers/chemistry , Drug Liberation , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Ketoprofen/chemistry , Ketoprofen/pharmacokinetics , Methacrylates/chemistry , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Polymers/chemical synthesis , Succinates/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...