Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 748: 141345, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32810806

ABSTRACT

Solute and particulate elemental concentrations (C) exhibit different responses to changes in discharge (Q), and those relationships are not well understood in subtropical agricultural environments. The objective is to describe the transport processes of different chemical elements during a set of contrasted rainfall events (2011-2015) that occurred in a small rural catchment under subtropical climate. The study was carried out in the Lajeado Ferreira Creek catchment (1.23 km2), southern Brazil. To this end, the concentrations in dissolved organic carbon (DOC), Cl-, NO3-, SO4-, ten chemical elements (in either dissolved or particulate forms) and suspended sediment concentrations (SSC) were determined. Metric indices were then calculated to characterize their transport patterns: (i) the best fit slope between log-C and log-Q (ß), (ii) the coefficient of variation of C and Q, (iii) shape of the hysteresis loop and hysteresis index, and (iv) the flushing index. All particulate elements along with the dissolved inorganic phosphorus (PO4-3) were shown to be controlled by the sediment dynamics. Geogenic elements (Fe2+, Zn2+, Cu2+, Mn2+, Si4+) showed a dilution effect with increasing Q values, likely because they were mainly transported with subsurface and base flow. Dissolved elements that are mainly supplied with fertilizers (Na+ and Cl-) as well as DOC showed a dilution effect, although they were mainly transported by surface runoff. Finally, a chemostatic behavior was found for those chemical elements (Mg2+, K+, Ca2+, NO3- and SO42-) that are supplied by more than one flow pathways. The results demonstrate that under subtropical climate conditions, the transport of essential nutrients including PO4-3 and metals (in particulate form), are mainly transported with surface runoff. Accordingly, runoff control on cultivated hillslopes should be improved to reduce the potential contaminant supply to the river and to reduce the potentially deleterious impacts that they may cause in downstream regions.

2.
Ecotoxicol Environ Saf ; 72(6): 1734-9, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19505722

ABSTRACT

We investigated how pesticide contamination of water affects the metabolism of the silver catfish, Rhamdia quelen, by studying fish maintained at two sites with low and high anthropic activity (Lino Creek, southern Brazil). Several pesticides were found at both stream sites. After 30 days plasma glucose levels were higher in fish exposed to water in the low anthropic activity site than those exposed to water in the high anthropic activity site. Plasma K+ levels, however, were lower after exposure to low anthropic water than after exposure to high anthropic water. Moreover, values of hepatic glycogen, muscle lactate and protein were higher, but glycogen and protein of the kidney were lower in fish exposed to water at the high anthropic activity site. Our results show that these fish can be used as pesticide toxicity indicators in streams near agricultural fields.


Subject(s)
Catfishes/metabolism , Fresh Water/chemistry , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Ammonia/metabolism , Animals , Blood Glucose/drug effects , Environmental Monitoring , Fish Proteins/metabolism , Glycogen/metabolism , Kidney/metabolism , Lactic Acid/metabolism , Liver/metabolism , Muscles/metabolism , Pesticides/analysis , Potassium/blood , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...