Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 28(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37298739

ABSTRACT

Excited-state chemistry relies on the communication between molecules, making it a crucial aspect of the field. One important question that arises is whether intermolecular communication and its rate can be modified when a molecule is confined. To explore the interaction in such systems, we investigated the ground and excited states of 4'-N,N-diethylaminoflavonol (DEA3HF) in an octa acid-based (OA) confined medium and in ethanolic solution, both in the presence of Rhodamine 6G (R6G). Despite the observed spectral overlap between the flavonol emission and the R6G absorption, as well as the fluorescence quenching of the flavonol in the presence of R6G, the almost constant fluorescence lifetime at different amounts of R6G discards the presence of FRET in the studied systems. Steady-state and time-resolved fluorescence indicate the formation of an emissive complex between the proton transfer dye encapsulated within water-soluble supramolecular host octa acid (DEA3HF@(OA)2) and R6G. A similar result was observed between DEA3HF:R6G in ethanolic solution. The respective Stern-Volmer plots corroborate with these observations, suggesting a static quenching mechanism for both systems.


Subject(s)
Ethers, Cyclic , Rhodamines/chemistry , Spectrum Analysis/methods
2.
Photochem Photobiol Sci ; 17(2): 231-238, 2018 Feb 14.
Article in English | MEDLINE | ID: mdl-29313047

ABSTRACT

This work presents the determination of acidic strengths at the electronic ground and excited states (pKa and ) of three flavonol derivatives using electronic absorption and fluorescence emission spectroscopy. The differences of the pKa and values were successfully correlated with the molecular structures according to the substitution pattern at the flavonol structure (hydrogen, diethylamino or fluoro moieties). In order to obtain more information about the observed photoacidity of these superacids, geometry optimizations and excitation energy calculations were performed at the CAM-B3LYP/6-311++G(d,p) level for their neutral, protonated and deprotonated species.

3.
Phys Chem Chem Phys ; 14(31): 10994-1001, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22782066

ABSTRACT

Two azo compounds were obtained through the diazotization reaction of aminobenzazole derivatives and N,N-dimethylaniline using clay montmorillonite KSF as catalyst. The synthesized dyes were characterized using elemental analysis, Fourier transform infrared spectroscopy, and (13)C and (1)H NMR spectroscopy in solution. Their photophysical behavior was studied using UV-vis and steady-state fluorescence in solution. These dyes present intense absorption in the blue region. The spectral features of the azo compounds can be related to the pseudo-stilbene type as well as the E isomer of the dyes. Excitation at the absorption maxima does not produce emissive species in the excited state. However, excitation around 350 nm allowed dual emission of fluorescence, from both a locally excited (LE, short wavelength) and an intramolecular charge transfer (ICT, long wavelength) state, which was corroborated by a linear relation of the fluorescence maximum (ν(max)) versus the solvent polarity function (Δf) from the Lippert-Mataga correlation. Evidence of TICT in these dyes was discussed from the viscosity dependence of the fluorescence intensity in the ICT emission band. Theoretical calculations were also performed in order to study the geometry and charge distribution of the dyes in their ground and excited electronic states. Using DFT methods at the theoretical levels BLYP/Aug-cc-pVDZ, for geometry optimizations and frequency calculations, and B3LYP/6-311+G(2d), for single-point energy evaluations, the calculations revealed that the least energetic and most intense photon absorption leads to a very polar excited state that relaxes non-radioactively, which can be associated with photochemical isomerization.

SELECTION OF CITATIONS
SEARCH DETAIL