Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Front Cell Infect Microbiol ; 13: 1328519, 2023.
Article in English | MEDLINE | ID: mdl-38264725

ABSTRACT

Lately, the bacterial multidrug resistance has been a reason to public health concerning around world. The development of new pharmacology therapies against infections caused by multidrug-resistant bacteria is urgent. In this work, we developed 10 NLC formulations composed of essential oils (EO), vegetable butter and surfactant. The formulations were evaluated for long-term and thermal cycling stability studies in terms of (particle size, polydispersion index and Zeta potential). In vitro antimicrobial assays were performed using disk diffusion test and by the determination of the minimum inhibitory concentration (MIC) performed with fresh and a year-old NLC. The most promising system and its excipients were structurally characterized through experimental methodologies (FTIR-ATR, DSC and FE-SEM). Finally, this same formulation was studied through nanotoxicity assays on the chicken embryo model, analyzing different parameters, as viability and weight changes of embryos and annexes. All the developed formulations presented long-term physicochemical and thermal stability. The formulation based on cinnamon EO presented in vitro activity against strains of Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa isolated from humans and in vivo biocompatibility. Considering these promising results, such system is able to be further tested on in vivo efficacy assays.


Subject(s)
Acinetobacter baumannii , Nanoparticles , Oils, Volatile , Chick Embryo , Animals , Humans , Drug Resistance, Multiple, Bacterial , Liposomes , Chickens
2.
Microorganisms ; 10(8)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893562

ABSTRACT

The use of essential oils (EO) loaded with nanoparticles is the most promising alternative to increase food quality and safety. Interesting works describe the antimicrobial properties of EO for pathogen control in natural and processed foods for human health and animal production, also contributing to sustainability. Their association with different nanosystems allows novel developments in the micronutrition, health promotion, and pathogen control fields, preventing the aggravation of bacterial microevolution and combating antibiotic resistance. Benefits to the environment are also provided, as they are biodegradable and biocompatible. However, such compounds have some physicochemical properties that prevent commercial use. This review focuses on recent developments in antimicrobial EO-based nanoparticles and their application in different food matrices.

3.
Antibiotics (Basel) ; 11(3)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35326852

ABSTRACT

Salmonella spp. continues to figure prominently in world epidemiological registries as one of the leading causes of bacterial foodborne disease. We characterised 43 Brazilian lineages of Salmonella Typhimurium (ST) strains, characterized drug resistance patterns, tested copper (II) complex as control options, and proposed effective antimicrobial measures. The minimum inhibitory concentration was evaluated for seven antimicrobials, isolated and combined with the copper (II) complex [Cu(4-FH)(phen)(ClO4)2] (4-FH = 4-fluorophenoxyacetic acid hydrazide and phen = 1,10-phenanthroline), known as DRI-12, in planktonic and sessile ST. In parallel, 42 resistance genes were screened (PCR/microarray). All strains were multidrug resistant (MDR). Resistance to carbapenems and polymyxins (86 and 88%, respectively) have drawn attention to the emergence of the problem in Brazil, and resistance is observed also to CIP and CFT (42 and 67%, respectively), the drugs of choice in treatment. Resistance to beta-lactams was associated with the genes blaTEM/blaCTX-M in 39% of the strains. Lower concentrations of DRI-12 (62.7 mg/L, or 100 µM) controlled planktonic and sessile ST in relation to AMP/SUL/TET and AMP/SUL/TET/COL, respectively. The synergistic effect provided by DRI-12 was significant for COL/CFT and COL/AMP in planktonic and sessile ST, respectively, and represents promising alternatives for the control of MDR ST.

4.
Biosci. j. (Online) ; 36(2): 546-555, 01-03-2020. tab, ilus
Article in English | LILACS | ID: biblio-1146419

ABSTRACT

Campylobacter spp. is an emerging pathogen that causes gastroenteritis in humans and the consumption of dairy food can characterize sources of infection. We aimed to verify the viability and a presence of transcripts associated with characteristics of virulence and adaptation of C. jejuni isolated from Minas Frescal cheeses, produced with contaminated milk and stored under refrigeration for up to ten days. The samples were analyzed for bioindicators, Campylobacter spp., pH, acidity, moisture and sodium chloride. Campylobacter spp. recovered were evaluated for the production of transcripts of: ciaB, dnaJ, p19 and sodB. The results were correlated with the viability of C. jejuni and changes in their transcriptome. Storage at lowtemperatures reduced C. jejuni from the first to the fourth day. The variations in humidity, pH and acidity influenced the decreasing of C. jejuni. There was a reduction in transcripts' production of the four genes, more pronounced on the fourth day, indicating the inability of the microorganism to perform its metabolic activities, due to the conditions of injury. Despite the presence of mechanisms of virulence and adaptation, C. jejuni could not remain viable four days after production. However, consumption of fresh cheese contaminated with Campylobacter jejuni can be a source of infection when consumed up to four days after production.


Campylobacter spp. é um patógeno emergente que causa gastroenterite em seres humanos e o consumo de produtos lácteos pode caracterizar fontes de infecção. O objetivo deste estudo foi verificar a viabilidade e a presença de transcritos associadas a características de virulência e adaptação de C. jejuniisoladas de queijos frescos, produzidos com leite contaminado e mantidos refrigeradas por dez dias. Foram analisados bioindicadores, Campylobacter spp., pH, acidez, umidade e cloreto de sódio. Campylobacter spp. recuperados foram avaliados quanto à produção dos transcritos: ciaB, dnaJ, p19 e sodB. Os resultados foram correlacionados com a viabilidade de C. jejuni e alterações no transcriptoma. O armazenamento em baixas temperaturas reduziu C. jejuni do primeiro ao quarto dia. As variações na umidade, pH e acidez influenciaram a queda de C. jejuni. Houve uma redução na produção de transcritos dos quatro genes, mais pronunciada no quarto dia, indicando a incapacidade do micro-organismo em realizar suas atividades metabólicas, devido às condições de injúria. Apesar da presença de mecanismos de virulência e adaptação, C. jejuni não permaneceu viável quatro dias após a produção. Porém, o consumo de queijo fresco contaminado com Campylobacter jejunipode ser uma fonte de infecção quando consumido até quatro dias após a produção.


Subject(s)
Campylobacter Infections , Cheese , Campylobacter jejuni , Virulence , Dairy Products , Gastroenteritis , Infections , Noxae
SELECTION OF CITATIONS
SEARCH DETAIL
...