Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Language
Publication year range
1.
Mol Biol Rep ; 51(1): 1012, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39320611

ABSTRACT

BACKGROUND: The development of therapies and vaccines for various diseases often necessitates the analysis of cellular immunity. However, unlike other rodents, the limited availability of reagents for Syrian hamsters restricts immunological analysis, particularly in the determination of serum effector molecules such as cytokines. In this study, we aim to produce and characterize the cytokines IFN-γ, TGF-ß, IL-6, IL-10, and TNF-α from Syrian hamsters in recombinant form and to generate polyclonal antibodies against them in rats. METHODS AND RESULTS: Cytokine transcript sequences were cloned into expression vectors in E. coli. Recombinant proteins were produced, purified through affinity chromatography, and characterized by Western blot using an anti-6xHis monoclonal antibody. Rats were immunized with the recombinant proteins to generate polyclonal antibodies (pAbs). These pAbs were characterized by Western blot and titrated by indirect ELISA. The recombinant cytokines rTNF-α, rIL-10, rIFN-γ, rTGF-ß, and rIL-6 were produced and specifically recognized at their expected molecular weights of 22.3 kDa, 19.8 kDa, 18.9 kDa, 11.8 kDa, and 22.9 kDa. pAbs were produced and demonstrated the ability to specifically recognize their target proteins with titers of 409,600 (rIL-10), 204,800 (rTNF-α), 102,400 (rIL-10), 51,200 (rTGF-ß), and 25,600 (rIFN-É£). CONCLUSIONS: The reagents produced represent a starting point for developing immunoassays to detect hamster cytokines, facilitating the analysis of cellular immunity in this biomodel.


Subject(s)
Cytokines , Immunity, Cellular , Mesocricetus , Recombinant Proteins , Animals , Cytokines/metabolism , Recombinant Proteins/immunology , Recombinant Proteins/genetics , Cricetinae , Rats , Antibodies/immunology , Escherichia coli/genetics , Escherichia coli/metabolism
2.
Pesqui. vet. bras ; 40(11): 898-902, Nov. 2020. ilus
Article in English | LILACS, VETINDEX | ID: biblio-1155020

ABSTRACT

Bacillus toyonensis is a probiotic microorganism that for decades has been used in animal nutrition around the world. The objective of this work was to evaluate the immunomodulatory effect of oral B. toyonensis supplementation in dogs vaccinated against canine parvovirus. Puppies were randomly selected and divided in two groups, one received B. toyonensis at a concentration of 2x10 8 viable spores per day and another group without supplementation was left as control. The puppies were vaccinated against canine parvovirus type 2. B. toyonensis supplementation was efficient in stimulating specific IgG for parvovirus with titers of 2, 3, and 2.5-fold higher than controls at 7, 21, and 35 pos-vaccination days respectively. Peripheral blood mononuclear cells (PBMCs) from dogs were cultured and stimulated with B. toyonensis DNA, vegetative cell and spores. The mRNA transcription of cytokines IL-4, IL-17, and IFN-γ up modulated by the stimuli. Thus, we conclude in this study that B. toyonensis supplementation may amplify the vaccine immune response against canine parvovirus.(AU)


Bacillus toyonensis é um micro-organismo probiótico que há décadas é utilizado na nutrição animal em todo o mundo. O objetivo deste trabalho foi avaliar o efeito imunomodulador da suplementação oral de B. toyonensis em cães vacinados contra o parvovírus canino. Os filhotes foram selecionados aleatoriamente e divididos em dois grupos, um recebeu B. toyonensis na concentração de 2 × 10 8 esporos viáveis por dia e outro grupo sem suplementação como controle. Os filhotes foram vacinados contra o parvovírus canino tipo 2. A suplementação com B. toyonensis foi eficiente em estimular IgG específica para parvovírus com títulos de 2, 3 e 2,5 vezes maior que os controles aos 7, 21 e 35 dias pós-vacinação, respectivamente. Células mononucleares do sangue periférico (PBMCs) de cães foram cultivadas e estimuladas com DNA de B. toyonensis, células vegetativas e esporos. A transcrição do mRNA das citocinas IL-4, IL-17 e IFN-γ foi modulada pelos estímulos. Assim, concluímos neste estudo que a suplementação com B. toyonensis pode amplificar a resposta imune da vacina contra o parvovírus canino.(AU)


Subject(s)
Animals , Dogs , Bacillus , Vaccines , Parvovirus, Canine , Probiotics , Immunologic Factors
SELECTION OF CITATIONS
SEARCH DETAIL