Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Haemost ; 16(9): 1789-1799, 2018 09.
Article in English | MEDLINE | ID: mdl-29968421

ABSTRACT

Essentials Bovine (HBI) and porcine (HPI) heparins differ in structure and anticoagulant activity. Protamine-neutralization was evaluated on a variety of physical-chemical methods. HBI requires more protamine than HPI to fully neutralize its anticoagulant activity. Protamine preferentially removes higher-sulfated chains of HBI while HPI is evenly precipitated. SUMMARY: Background Protamine neutralization is an essential step for the safe use and inactivation of the unfractionated heparin (UFH) that is widely employed in surgical and non-surgical procedures involving extracorporeal circulation. Objective To compare protamine neutralization of different pharmaceutical-grade UFHs prepared from porcine or bovine intestine (HPI and HBI, respectively). HBI has approximately half the anticoagulant potency of HPI, mostly as consequence of its fraction enriched with N-sulfated α-glucosamine disaccharides. Methods Protamine neutralization of HPI and HBI was evaluated with in vitro, ex vivo and in vivo assays. We also performed in-depth assessments of the complexation of protamine with these distinct UFHs by using nuclear magnetic resonance and mass spectroscopy. Results HPI and HBI interact similarly with protamine on a mass/mass basis; however, HBI requires more protamine than HPI to have its anticoagulant activity fully neutralized, because of its lower potency, which entails the use of higher doses. Nuclear magnetic resonance spectra revealed that HPI precipitates homogeneously with protamine. On the other hand, the low-sulfated fraction of HBI, enriched with N-sulfated α-glucosamine, precipitates at higher concentrations of protamine than the fraction more like HPI, with a preponderance of N,6-disulfated α-glucosamine disaccharides. Finally, mass spectroscopy spectra showed that some of the different peptide components of protamine interact preferentially with the heparins, irrespective of their animal origin. Conclusion Our results have important medical implications, indicating that protamine neutralization of HBI, determined exclusively by point-of-care coagulation assessments, must fail because of its lower-sulfated fraction with reduced anticoagulant activity that could remain in the circulation after the neutralization procedure.


Subject(s)
Anticoagulants/pharmacology , Heparin Antagonists/pharmacology , Heparin/pharmacology , Protamines/pharmacology , Animals , Anticoagulants/chemistry , Anticoagulants/isolation & purification , Biological Assay , Cattle , Chemical Precipitation , Chromatography, Affinity , Disaccharides/chemistry , Dose-Response Relationship, Drug , Heparin/chemistry , Heparin/isolation & purification , Intestinal Mucosa/chemistry , Mass Spectrometry , Nuclear Magnetic Resonance, Biomolecular , Partial Thromboplastin Time , Protamines/chemistry , Rats , Species Specificity , Sulfur/analysis , Swine
2.
J Microsc ; 267(3): 409-419, 2017 09.
Article in English | MEDLINE | ID: mdl-28605112

ABSTRACT

Biofilms are frequently related to invasive fungal infections and are reported to be more resistant to antifungal drugs than planktonic cells. The structural complexity of the biofilm as well as the presence of a polymeric extracellular matrix (ECM) is thought to be associated with this resistant behavior. Scanning electron microscopy (SEM) after room temperature glutaraldehyde-based fixation, have been used to study fungal biofilm structure and drug susceptibility but they usually fail to preserve the ECM and, therefore, are not an optimised methodology to understand the complexity of the fungal biofilm. Thus, in this work, we propose a comparative analysis of room-temperature and cryofixation/freeze substitution of Candida albicans biofilms for SEM observation. Our experiments showed that room-temperature fixative protocols using glutaraldehyde and osmium tetroxide prior to alcohol dehydration led to a complete extraction of the polymeric ECM of biofilms. ECM from fixative and alcohol solutions were recovered after all processing steps and these structures were characterised by biochemistry assays, transmission electron microscopy and mass spectrometry. Cryofixation techniques followed by freeze-substitution lead to a great preservation of both ECM structure and C. albicans biofilm cells, allowing the visualisation of a more reliable biofilm structure. These findings reinforce that cryofixation should be the indicated method for SEM sample preparation to study fungal biofilms as it allows the visualisation of the EMC and the exploration of the biofilm structure to its fullest, as its structural/functional role in interaction with host cells, other pathogens and for drug resistance assays.


Subject(s)
Biofilms , Candida albicans/physiology , Candida albicans/ultrastructure , Microscopy, Electron, Scanning , Bacterial Proteins/metabolism , Carbohydrate Metabolism , Cryopreservation/methods , Gas Chromatography-Mass Spectrometry , Microscopy, Electron, Scanning/methods , Temperature
3.
J Thromb Haemost ; 12(1): 43-53, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24261511

ABSTRACT

BACKGROUND: Sulfated galactans are polysaccharides with heterogeneous structures that frequently show anticoagulant activity. Their anticoagulant mechanisms are complex and distinct from those observed for heparin. Sulfated galactans act through a combination of effects involving serpin-dependent and serpin-independent mechanisms. Interestingly, these polymers can also induce blood coagulation due to activation of factor XII (FXII). OBJECTIVES: The structure of a complex sulfated galactan from the red alga Acanthophora muscoides was characterized by solution nuclear magnetic resonance. This polysaccharide and another previously characterized algal sulfated galactan from Botryocladia occidentalis were each used in in vitro and in vivo anticoagulant and antithrombotic assays to understand the possible structural determinants of their functional effects. RESULTS AND CONCLUSIONS: The serpin-dependent anticoagulant effects and FXII-related procoagulant effects of the sulfated galactans decreased in parallel with the molecular size. The serpin-independent anticoagulation also correlated with the chemical structure of the sulfated galactans. The sulfated galactan from A. muscoides, which showed mostly serpin-independent anticoagulant activity and reduced activation of FXII, drastically reduced arterial thrombus formation. However, the sulfated galactans produced opposite effects on venous thrombosis; this difference appears to result from the tenuous balance between the various effects on coagulation, including serpin-dependent and serpin-independent anticoagulation and FXIIa-dependent procoagulation. This study of novel sulfated polysaccharides with distinct effects on coagulation and thrombosis helps to establish the minimal structural-function relationship required for the development of antithrombotic drugs.


Subject(s)
Anticoagulants/pharmacology , Antithrombins/pharmacology , Galactans/pharmacology , Serpins/physiology , Sulfates/chemistry , Anticoagulants/chemistry , Antithrombins/chemistry , Chromatography, Ion Exchange , Galactans/chemistry , Magnetic Resonance Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...