Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Plant Dis ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698519

ABSTRACT

Bacaba (Oenocarpus bacaba Mart.) is a native palm tree from Brazilian Amazon and Cerrado biomes. This tree produces a small, rounded fruit with dark skin and approximately 1.5 mm thick pulp, extensively utilized for palm heart extraction, juices, and jellies (De Cól et al. 2021). However, several diseases can adversely impact fruit yield and quality. During the 2021 growing season, anthracnose symptoms were observed in Bacaba fruits, with a disease incidence of 58% in fruits collected from the Abreulândia (9°37'15″ S, 49°9'3″ W) and Gurupi (12°25'46" S; 49°16'42" W) municipalities in Tocantins state, Brazil. A total of 198 fruits exhibiting anthracnose symptoms, characterized by deep necrotic spots, were collected. In the laboratory, symptomatic fruits had their external surfaces sterilized for 30 seconds in 70% ethanol, 1 min in 1.5% NaOCl, and then rinsed with sterile distilled water. Sterilized pieces of the fruit tissue were transferred to PDA medium and incubated for 7 days at 28 ºC with a 12 h photoperiod. After this period, two isolates were obtained from the colonies and were identified both macroscopically and microscopically as Colletotrichum sp. The colonies grown at PDA showed a white to grey cottony mycelia, with straight and fusiform conidia, ranging from 14.0 to 21.0 (mean value of 15.8 ± 1.8) µm in length and 4.0 to 7.0 (mean value of 5.5 ± 0.7) µm in width, (n = 50). For species identification, the intergenic spacer between DNA lyase, mating-type locus MAT1-2-1 (APN2/MAT-IGS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glutamine synthetase (GS), and ß-tubulin (TUB) loci were amplified and sequenced. Resulting sequences were deposited in GenBank (OR333843, OR333844, OR333845 and OR333846). BLAST analysis of the partial APN2/MAT-IGS (99%), GAPDH (99,48%), GS (99,32%) and TUB (99,48%) sequences showed highly similarity to C. siamense isolates (IIFT223 and CBS130147). Maximum likelihood multilocus analysis placed the isolate UFTC16 within the C. siamense clade with 98% bootstrap support, clearly assigning the isolate to this species. Morphological features were consistent with the description of C. siamense (Prihastuti et al., 2009). Inoculation of Bacaba fruits and seedlings was conducted to confirm pathogenicity. The surface of uninjured Bacaba fruits was inoculated with two drops (20 µL) of conidial suspension (106 conidia mL-1). The same methodology was adopted to placed healthy leaves of 35-day-old seedlings grown in plastic tubes. Two drops of sterile distilled water were inoculated on nonwounded healthy fruits and seedlings as a negative control. The fruits and seedlings were incubated for five days in a controlled chamber at 28 °C, 70-80% humidity and a "12-h photoperiod". The experiment was conducted with five replicates (five fruits and five seedlings inoculated per isolate) and repeated once. Typical symptoms of anthracnose were observed in the fruits and leaves of Bacaba seedlings five days after inoculation. No symptoms were observed in the negative control. The pathogen was reisolated from symptomatic fruits and leaves, showing similar morphological characteristics as the original isolate, fulfilling Koch's postulates. The identification of C. siamense as the causal agent of Bacaba anthracnose helps in the diagnosis and disease control strategies of the disease. Colletotrichum siamense is a cosmopolitan species and easily found in cultivated and non-cultivated species (Batista et al. 2023). However, to the best of our knowledge, this is the first report of C. siamense causing anthracnose on Bacaba.

2.
Folia Microbiol (Praha) ; 69(1): 91-99, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38017300

ABSTRACT

Bacillus thuringiensis (Bt) is known for its Cry and Vip3A pesticidal proteins with high selectivity to target pests. Here, we assessed the potential of a novel neotropical Bt strain (UFT038) against six lepidopteran pests, including two Cry-resistant populations of fall armyworm, Spodoptera frugiperda. We also sequenced and analyzed the genome of Bt UFT038 to identify genes involved in insecticidal activities or encoding other virulence factors. In toxicological bioassays, Bt UFT038 killed and inhibited the neonate growth in a concentration-dependent manner. Bt UFT038 and HD-1 were equally toxic against S. cosmioides, S. frugiperda (S_Bt and R_Cry1 + 2Ab populations), Helicoverpa zea, and H. armigera. However, larval growth inhibition results indicated that Bt UFT038 was more toxic than HD-1 to S. cosmioides, while HD-1 was more active against Chrysodeixis includens. The draft genome of Bt UFT038 showed the cry1Aa8, cry1Ac11, cry1Ia44, cry2Aa9, cry2Ab35, and vip3Af5 genes. Besides this, genes encoding the virulence factors (inhA, plcA, piplC, sph, and chi1-2) and toxins (alo, cytK, hlyIII, hblA-D, and nheA-C) were also identified. Collectively, our findings reveal the potential of the Bt UFT038 strain as a source of insecticidal genes against lepidopteran pests, including S. cosmioides and S. frugiperda.


Subject(s)
Bacillus thuringiensis , Insecticides , Moths , Animals , Humans , Infant, Newborn , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Glycine max , Endotoxins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hemolysin Proteins/genetics , Hemolysin Proteins/metabolism , Hemolysin Proteins/pharmacology , Insecticides/pharmacology , Insecticides/metabolism , Spodoptera/metabolism , Larva , Virulence Factors/metabolism , Pest Control, Biological
3.
Insects ; 14(8)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37623407

ABSTRACT

Drosophila suzukii, an invasive insect pest, poses a significant threat to various fruit crops. The use of broad-spectrum insecticides to control this pest can reduce the effectiveness of biological control agents, such as the parasitoid Trichopria anastrephae. Here, we evaluated the toxicity of newly synthesized lactone derivatives on D. suzukii and their selectivity towards T. anastrephae. We used in silico approaches to identify potential targets from the most promising molecules in the D. suzukii nervous system and to understand potential differences in susceptibilities between D. suzukii and its parasitoid. Of the nine molecules tested, (rac)-8 and compound 4 demonstrated efficacy against the fly. Exposure to the estimated LC90 of (rac)-8 and compound 4 resulted in a mortality rate of less than 20% for T. anastrephae without impairing the parasitoid's functional parasitism. The in silico predictions suggest that (rac)-8 and compound 4 target gamma amino butyric acid (GABA) receptors and transient receptor potential (TRP) channels of D. suzukii. However, only the reduced interaction with TRP channels in T. anastrephae demonstrated a potential reason for the selectivity of these compounds on the parasitoid. Our findings suggest the potential for integrating (rac)-8 and compound 4 into D. suzukii management practices.

4.
Vaccines (Basel) ; 11(3)2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36992253

ABSTRACT

Acinetobacter baumannii is a Gram-negative, immobile, aerobic nosocomial opportunistic coccobacillus that causes pneumonia, septicemia, and urinary tract infections in immunosuppressed patients. There are no commercially available alternative antimicrobials, and multi-drug resistance is an urgent concern that requires emergency measures and new therapeutic strategies. This study evaluated a multi-drug-resistant A. baumannii whole-cell vaccine, inactivated and adsorbed on an aluminum hydroxide-chitosan (mAhC) matrix, in an A. baumannii sepsis model in immunosuppressed mice by cyclophosphamide (CY). CY-treated mice were divided into immunized, non-immunized, and adjuvant-inoculated groups. Three vaccine doses were given at 0D, 14D, and 28D, followed by a lethal dose of 4.0 × 108 CFU/mL of A. baumannii. Immunized CY-treated mice underwent a significant humoral response, with the highest IgG levels and a higher survival rate (85%); this differed from the non-immunized CY-treated mice, none of whom survived (p < 0.001), and from the adjuvant group, with 45% survival (p < 0.05). Histological data revealed the evident expansion of white spleen pulp from immunized CY-treated mice, whereas, in non-immunized and adjuvanted CY-treated mice, there was more significant organ tissue damage. Our results confirmed the proof-of-concept of the immune response and vaccine protection in a sepsis model in CY-treated mice, contributing to the advancement of new alternatives for protection against A. baumannii infections.

5.
Plants (Basel) ; 11(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36501335

ABSTRACT

The use of formulations containing botanical products for controlling insects that vector human and animal diseases has increased in recent years. Plant extracts seem to offer fewer risks to the environment and to human health without reducing the application strategy's efficacy when compared to synthetic and conventional insecticides and repellents. Here, we evaluated the potential of extracts obtained from caninana, Chiococca alba (L.) Hitchc. (Rubiaceae), plants as a tool to be integrated into the management of Aedes aegypti, one of the principal vectors for the transmission of arborviruses in humans. We assessed the larvicidal and repellence performance against adult mosquitoes and evaluated the potential undesired effects of the extracts on non-target organisms. We assessed the susceptibility and predatory abilities of the nymphs of Belostoma anurum, a naturally occurring mosquito larva predator, and evaluated the C. alba extract's cytotoxic effects in mammalian cell lines. Our chromatographic analysis revealed 18 compounds, including rutin, naringin, myricetin, morin, and quercetin. The methanolic extracts of C. alba showed larvicidal (LC50 = 82 (72-94) mg/mL) activity without killing or affecting the abilities of B. anurum to prey upon mosquito larvae. Our in silico predictions revealed the molecular interactions between rutin and the AeagOBP1 receptor to be one possible mechanism for the repellent potential recorded for formulations containing C. alba extracts. Low cytotoxicity against mammalian cell lines reinforces the selectivity of C. alba extracts. Collectively, our findings highlight the potential of C. alba and one of its constituents (rutin) as alternative tools to be integrated into the management of A. aegypti mosquitoes.

6.
Molecules ; 27(16)2022 Aug 13.
Article in English | MEDLINE | ID: mdl-36014413

ABSTRACT

The use of plant-based products has been shown to efficiently inhibit fungi-mediated diseases in agricultural crops. Here, we extracted and evaluated the composition of noni, Morinda citrifolia L., essential oil and assessed its activities against Stagonosporopsis cucurbitacearum in Cucumis melo L. Using in silico molecular approaches, potential interactions between the essential oil major components and S. cucurbitacearum tyrosine-tRNA ligase were predicted. Finally, we also measured the potential interference of plant physiology (the stomatal conductance and net photosynthesis) mediated by the application of the M. citrifolia essential oil. Chromatographic analysis revealed that octanoic acid (75.8%), hexanoic acid (12.8%), and isobutyl pent-4-enyl carbonate (3.1%) were the major essential oil compounds. Octanoic acid and noni essential oil, when used as preventive measures, reduce fungal mycelial growth at a concentration of 5 mg/mL without causing significant damage to the treated leaves, which reinforces their efficacies as preventive tools against S. cucurbitacearum. Molecular docking analyses predicted very stable interactions between the major essential oil constituents and S. cucurbitacearum tyrosine-tRNA ligase, suggesting the interference of these plant-based molecules upon enzyme activation. Octanoic acid and M. citrifolia essential oil at concentrations of 20 mg/mL decreased the stomatal conductance and net photosynthesis rate of melon plants, resulting in robust phytotoxicity. Collectively, our findings indicated that despite the phytotoxicity risks at higher concentrations, M. citrifolia essential oil and octanoic acid, have potential as alternative tools for the integrative management of S. cucurbitacearum.


Subject(s)
Morinda , Oils, Volatile , Tyrosine-tRNA Ligase , Ascomycota , Caprylates , Molecular Docking Simulation , Morinda/chemistry , Oils, Volatile/pharmacology , Plant Extracts/chemistry
7.
Plant Dis ; 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35263155

ABSTRACT

Cassava (Manihot esculenta) is one of the main food sources of energy in developing countries owing to its starch-rich roots (Pinweha et al., 2015). Anthracnose is considered the most destructive disease of the aerial part of this crop (Bragança et al., 2016; Liu et al., 2019), and it is caused by species such as Colletotrichum plurivorum, C. karstii, C. fructicola, C. siamense (Liu et al., 2019), and C. theobromicola (Oliveira et al, 2016). In 2019, leaves with irregular necrotic spots, typical symptoms of anthracnose, were collected in Pará, Brazil. Commercial sampled fields showed 20% of incidence of anthracnose. Colletotrichum strains were isolated and cultured on potato dextrose agar at 25 ºC with a 12-h light photoperiod from surface-disinfected (70% alcohol and 1% sodium hypochlorite) lesion transition area. Five of the obtained isolates exhibited brown colonies on the upper and lower surfaces. Conidia were hyaline, cylindrical and aseptate, 12.82-15.23 µm × 3.52-5.25 µm in size. These phenotypic characters were similar to those belonging to C. orchidearum sensu lato (Damm et al. 2019). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), ß-tubulin (TUB2), chitin synthase 1(CHS-1), and histone HIS3 partial gene were amplified and sequenced for one representative isolate (UFT/Coll89). Sequences were deposited in GenBank [Accession numbers: MT396235 (GAPDH), MT800856 (TUB2), MT800870 (CHS-1), and MT856672 (HIS3)]. BLASTn searches of CHS-1 and HIS3 sequences showed 100% identity to C. musicola. Maximum Likelihood Phylogenetic analysis, including previously published sequences of closely related species, placed the isolate from Cassava in the C. musicola clade with 100% support, and confidently it assigned to this species. Pathogenicity was proven with inoculations by spraying a conidial suspension (106 conida mL-1) on 3-month-old cassava plants (three unwounded leaves per plant). The plants were placed in a humid chamber at 25 °C for 48h, and a 12-h photoperiod. The negative control was represented by plants inoculated with sterile distilled water. The experiment was repeated twice. The same symptoms observed in the field were reproduced only in inoculated leaves, from which the pathogen was reisolated lesions fulfilling Koch's postulates. No symptoms were observed on the negative control. To our knowledge, this is the first report of C. musicola joining a group of new and emergent species of Colletotrichum causing anthracnose in cassava producing regions around the world. The identification of this species causing cassava anthracnose is crucial to improve the disease control strategies and resistance breeding programs.

8.
Plant Dis ; 2021 May 25.
Article in English | MEDLINE | ID: mdl-34032491

ABSTRACT

Cassava (Manihot esculenta Crantz) presents significant economic importance in Brazil and other developing countries due to its use in human and animal feeding. In 2019, cassava plants sampled in Pará state (Brazil) presented necrotic and irregular leaf spots, characteristic symptoms of cassava anthracnose. About 90% of the plants were symptomatic, and disease severity was higher during months with high temperature and humidity. Fragments of symptomatic tissues were removed from the lesion transition area, surface disinfested (45 s in 70% ethanol, 1 min in 1% NaOCl, and rinsed twice in sterile water), and plated on potato dextrose agar. Cultures were incubated at 25 °C under continuous light for 7 days. Among the obtained isolates, seven presented grey felt-like mycelium with white sectors, reverse greyish, and hyaline, aseptate, smooth-walled, falcate conidia with average size 20.7-30.7 (26.1 ± 2.1) × 2.4-4.8 (3.5 ± 0.5) µm. Phenotypical features were similar to C. truncatum (Damm et al. 2019). The representative isolate UFT/Coll87 was chosen for further assays. The identity of the isolate was determined by maximum likelihood analysis using sequences of actin (ACT, GenBank accession number MT321653), ß-tubulin (TUB2, MT856673) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH, MT800857) partial regions. Colletotrichum isolate from cassava nested with C. truncatum isolates in a clade with 100% support, being confidently assigned to this species. Koch's postulates were fulfilled to confirm the pathogenicity of UFT/Coll87. Inoculation was carried out in three cassava plants by spraying a conidial suspension (106 conida mL-1) on unwounded leaves (three leaves per plant). Plants sprayed with sterile water represented negative control. Inoculated plants were kept in a humid chamber for 48 h, 25 °C, and a 12-h photoperiod. The experiment was repeated 2 times. Typical cassava anthracnose symptoms were observed 10 days after inoculation. No symptoms were observed in negative control. The pathogen was reisolated from symptomatic leaves and was phenotypically identical to the original isolate UFT/Coll87, fulfilling Koch's postulates. Colletotrichum fructicola, C. karstii, C. plurivorum, and C. siamense were reported causing cassava anthracnose in China (Liu et al. 2019). In Brazil, C. chrysophilum, C. fructicola, C. siamense and C. theobromicola were reported in association with cassava (Bragança et al. 2016; Oliveira et al. 2018; Machado et al. 2020). To our knowledge, this is the first report of C. truncatum causing cassava anthracnose worldwide. Our finding is important for disease management due to the high host range of C. truncatum. The pathogen can reduce the cassava yield, and the crop may serve as a potential inoculum source since it is commonly cultivated near to other crops that are also infected by C. truncatum.

9.
J Basic Microbiol ; 61(5): 459-471, 2021 May.
Article in English | MEDLINE | ID: mdl-33682166

ABSTRACT

Brazil is the largest producer, consumer, and exporter of forage seeds in the world. However, the high incidence of pathogens threatens the seed production system, resulting in decreases in production and quality. Currently, the emphasis has been placed on the use of alternative products as a way of maintaining productivity and environmental sustainability. Thus, the objective of this study was to evaluate the mycoflora associated with the commercial seeds of Brachiaria brizantha and Panicum maximum treated with chemical and alternative fungicide. To test with chemical and alternative treatments, seeds were subjected to fluazinam + thiophanate-methyl, fludioxonil + metalaxyl-M, noni essential oil, rosemary pepper essential oil, sulfuric acid. There was also an untreated control. The most efficient products in the control of incident fungi were, in decreasing order, fluazinam + thiophanate-methyl, fludioxonil + metalaxyl-M, noni essential oil, rosemary pepper essential oil, and sulfuric acid. Fungicides mainly controlled the genera Alternaria, Aspergillus, Bipolaris, Chaetomium, Cladosporium, Colletotrichum, Curvularia, Fusarium, Penicillium, Phoma and Rhizopus. Essential oils showed positive effects in controlling Bipolaris, Curvularia, and Fusarium. Sulfuric acid reduced the incidence of Bipolaris, Colletotrichum, Curvularia, Fusarium, Phoma, and Rhizopus. Seed treatment is one of the promising strategies for obtaining seeds of a healthy quality. As a result, the fungicides and botanical components listed above were promising in reducing fungi associated with forage seeds and can be used for seed treatments and in the development of new products with a natural base through essential oils.


Subject(s)
Brachiaria/drug effects , Fungicides, Industrial/pharmacology , Oils, Volatile/pharmacology , Panicum/drug effects , Plant Oils/pharmacology , Seeds/drug effects , Seeds/microbiology , Brazil , Fungicides, Industrial/classification
10.
Plant Dis ; 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33206014

ABSTRACT

Cassava (Manihot esculenta Crantz) has significant socioeconomic relevance in Brazil and other developing countries, as one of the main sources of carbohydrates for human and animal consumption (De Oliviera et al., 2011). Among the cassava crop diseases, anthracnose is one of the main limiting factors for production and may be caused by species like Colletotrichum plurivorum, C. karstii, C. fructicola, and C. siamense (Bragança et al., 2016; Liu et al., 2019; Oliveira et al., 2016; Sangpueak; Phansak; Buensanteai, 2018). Severity in the field is variable, depending on the resistance of the variety used and is also highly influenced by the climate, being the most severe disease under high humidity and high temperature. Under these conditions, it can cause losses of up to 100%. In 2019, cassava leaves presenting dark brown necrotic injuries of different sizes and irregular borders-typical anthracnose symptoms- were collected from commercial plantations in the states of Pará and Tocantins, Brazil. Symptomatic tissue fragments were superficially disinfected, placed in plates with potato dextrose agar (PDA), and incubated under 25 ± 2 °C for seven days. In the 56 isolates used in the morphological identification, the colonies were white and gray at the top and dark gray in the bottom with sector formation. The conidia were hyaline, cylindrical, and aseptic, 10.04 to 17.83 µm long × 3.29 to 5.75 µm wide. These phenotypical characteristics were similar to those of C. gloeosporioides lato sensu species (Weir et al., 2012). Genomic DNA was extracted from two representative isolates (UFT/Coll69, collected in the municipality of Casa de Tábua-PA; UFT/Coll82, collected in Pau Darco-PA) and the APN2 / MAT-IGS, DNA lyase (Apn2), and glyceraldehyde-3-phosphate dehydrogenase-IGS (GAP2-IG) intergenic spacers were amplified and sequenced. The nucleotide sequences were deposited in the GenBank (accession numbers: MT409462, MT396231, MT759633, MT396239, MT396232, MT800846). The BLASTn (Basic Local Alignment Search Tool) showed a 99 to 100% similarity with Colletotrichum chrysophillum. The maximum likelihood phylogenetic analysis grouped the isolates in the C. chrysophillum clade, with a high bootstrap value (98%). Based on morphocultural characteristics and the phylogenetic analysis, the isolates associated with M. esculenta anthracnose were identified as C. chrysophillum, with a frequency of 6.67% among Colletotrichum colonies isolated from cassava leaves. The inoculation of three isolates was carried out in three plants, three leaves for each plant, by spraying spore solution with a concentration of 1×106 conidia / ml, without wounding the leaves and placed in a humid chamber at 25 ° C for ten days. Control plants were inoculated with sterile distilled water. From the 2nd day after inoculation, small irregular necrotic lesions appeared that increased in size over time, while control plants remained asymptomatic. Both were pathogenic and the symptoms caused after inoculation were similar to each other and to those observed in the field. In Brazil, anthracnose by C. chrysophillum was reported in cashew (Veloso et al., 2018) and banana trees (Vieira et al., 2017). To our knowledge, this is the first report of cassava anthracnose disease by C. chrysophillum.

11.
J Econ Entomol ; 113(6): 2997-3003, 2020 12 09.
Article in English | MEDLINE | ID: mdl-32990732

ABSTRACT

Frankliniella schultzei (Trybom) is a serious pest of melon crops and is commonly found in the main producing areas of melon in Brazil (North and Northeast regions). This pest causes significant losses, damaging plants through feeding and tospovirus vectoring. Thus, the proper management of F. schultzei is crucial to prevent economic losses, and knowledge of the within-field distribution patterns of F. schultzei can be used to improve this pest management. This study aimed to determine the within-field distribution (through semivariogram modeling and kriging interpolation) and the factors associated with F. schultzei abundance in open-field yellow melon crops. We surveyed four yellow melon fields located in Formoso do Araguaia (Tocantins state, North Brazil) for thrips abundance in various crop stages (vegetative, flowering, and fruiting) in 2015 and 2016. Twelve models were fitted and it was determined that F. schultzei counts were strongly aggregated. The median spatial dependence was 4.79 m (range 3.55 to 8.02 m). The surface maps generated by kriging depicted an edge effect in fields 3 and 4. In addition, correlation analyses indicated that air temperature and presence of surrounding cucurbits are positively associated with F. schultzei abundance in yellow melon fields. Altogether, these insights can be combined for spatially based pest management, especially when the conditions (cucurbits in the surroundings and warmer periods) are favorable to F. schultzei.


Subject(s)
Cucurbitaceae , Thysanoptera , Tospovirus , Animals , Brazil , Pest Control
12.
Sci Rep ; 10(1): 5518, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32218451

ABSTRACT

Bacillus thuringiensis serovar israelensis (Bti) is used to control insect vectors of human and animal diseases. In the present study, the toxicity of four strains of Bti, named T0124, T0131, T0137, and T0139, toward Aedes aegypti and Culex quinquefasciatus larvae was analyzed. The T0131 strain showed the highest larvicidal activity against A. aegypti (LC50 = 0.015 µg/ml) and C. quinquefasciatus larvae (LC50 = 0.035 µg/ml) when compared to the other strains. Furthermore, the genomic sequences of the four strains were obtained and compared. These Bti strains had chromosomes sizes of approximately 5.4 Mb with GC contents of ~35% and 5472-5477 putative coding regions. Three small plasmids (5.4, 6.8, and 7.6 kb) and three large plasmids (127, 235, and 359 kb) were found in the extrachromosomal content of all four strains. The SNP-based phylogeny revealed close relationship among isolates from this study and other Bti isolates, and SNPs analysis of the plasmids 127 kb did not reveal any mutations in δ-endotoxins genes. This newly acquired sequence data for these Bti strains may be useful in the search for novel insecticidal toxins to improve existing ones or develop new strategies for the biological control of important insect vectors of human and animal diseases.


Subject(s)
Aedes/parasitology , Bacillus thuringiensis/classification , Chromosomes, Bacterial/genetics , Culex/parasitology , Genomics/methods , Whole Genome Sequencing/methods , Animals , Bacillus thuringiensis/genetics , Bacillus thuringiensis/immunology , Bacillus thuringiensis Toxins/genetics , Base Composition , Endotoxins/genetics , Genome Size , Hemolysin Proteins/genetics , Larva/parasitology , Mosquito Vectors/parasitology , Phylogeny , Plasmids/genetics , Polymorphism, Single Nucleotide , Serogroup
13.
Article in English | MEDLINE | ID: mdl-30834379

ABSTRACT

Plasmids play a crucial role in the evolution of bacterial genomes by mediating horizontal gene transfer. In this work, we sequenced two plasmids found in a Brazilian Bacillus thuringiensis serovar israelensis strain which showed 100% nucleotide identities with Bacillus thuringiensis serovar kurstaki plasmids.

14.
Genome Announc ; 6(22)2018 May 31.
Article in English | MEDLINE | ID: mdl-29853516

ABSTRACT

During the fermentation process, Bacillus thuringiensis (Bt) phages can result in bacterial death and decreased yield. In this work, we describe the genome of a new phage related to the Siphoviridae viral family from a Brazilian strain of Bt which showed high nucleotide sequence identity to the genomes of phages phi4l1 and BtCS33.

15.
Sci Rep ; 8(1): 7215, 2018 05 08.
Article in English | MEDLINE | ID: mdl-29740112

ABSTRACT

Although the cultivation of transgenic plants expressing toxins of Bacillus thuringiensis (Bt) represents a successful pest management strategy, the rapid evolution of resistance to Bt plants in several lepidopteran pests has threatened the sustainability of this practice. By exhibiting a favorable safety profile and allowing integration with pest management initiatives, plant essential oils have become relevant pest control alternatives. Here, we assessed the potential of essential oils extracted from a Neotropical plant, Siparuna guianensis Aublet, for improving the control and resistance management of key lepidopteran pests (i.e., Spodoptera frugiperda and Anticarsia gemmatalis). The essential oil exhibited high toxicity against both lepidopteran pest species (including an S. frugiperda strain resistant to Cry1A.105 and Cry2Ab Bt toxins). This high insecticidal activity was associated with necrotic and apoptotic effects revealed by in vitro assays with lepidopteran (but not human) cell lines. Furthermore, deficits in reproduction (e.g., egg-laying deterrence and decreased egg viability), larval development (e.g., feeding inhibition) and locomotion (e.g., individual and grouped larvae walking activities) were recorded for lepidopterans sublethally exposed to the essential oil. Thus, by similarly and efficiently controlling lepidopteran strains susceptible and resistant to Bt toxins, the S. guianensis essential oil represents a promising management tool against key lepidopteran pests.


Subject(s)
Insecticide Resistance/drug effects , Insecticides/pharmacology , Laurales/chemistry , Moths/drug effects , Oils, Volatile/pharmacology , Spodoptera/drug effects , Animals , Bacillus thuringiensis/chemistry , Bacillus thuringiensis Toxins , Bacterial Proteins/isolation & purification , Bacterial Proteins/pharmacology , Cell Line , Endotoxins/isolation & purification , Endotoxins/pharmacology , Hemolysin Proteins/isolation & purification , Hemolysin Proteins/pharmacology , Insecticides/isolation & purification , Larva/drug effects , Larva/physiology , Locomotion/drug effects , Locomotion/physiology , Moths/physiology , Oils, Volatile/isolation & purification , Pest Control, Biological/methods , Spodoptera/physiology , Zygote/drug effects , Zygote/physiology
16.
J Econ Entomol ; 111(4): 1895-1903, 2018 08 03.
Article in English | MEDLINE | ID: mdl-29669025

ABSTRACT

Spatiotemporal dynamics studies of crop pests enable the determination of the colonization pattern and dispersion of these insects in the landscape. Geostatistics is an efficient tool for these studies: to determine the spatial distribution pattern of the pest in the crops and to make maps that represent this situation. Analysis of these maps across the development of plants can be used as a tool in precision agriculture programs. Watermelon, Citrullus lanatus (Thunb.) Matsum. and Nakai (Cucurbitales: Cucurbitaceae), is the second most consumed fruit in the world, and the whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is one of the most important pests of this crop. Thus, the objective of this work was to determine the spatiotemporal distribution of B. tabaci in commercial watermelon crops using geostatistics. For 2 yr, we monitored adult whitefly densities in eight watermelon crops in a tropical climate region. The location of the samples and other crops in the landscape was georeferenced. Experimental data were submitted to geostatistical analysis. The colonization of B. tabaci had two patterns. In the first, the colonization started at the outermost parts of the crop. In the second, the insects occupied the whole area of the crop since the beginning of cultivation. The maximum distance between sites of watermelon crops in which spatial dependence of B. tabaci densities was observed was 19.69 m. The adult B. tabaci densities in the eight watermelon fields were positively correlated with rainfall and relative humidity, whereas wind speed negatively affected whiteflies population.


Subject(s)
Citrullus , Cucurbitaceae , Hemiptera , Agriculture , Animals , Crops, Agricultural
17.
R Soc Open Sci ; 4(1): 160866, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28280585

ABSTRACT

Bees are key pollinators whose population numbers are declining, in part, owing to the effects of different stressors such as insecticides and fungicides. We have analysed the susceptibility of the Africanized honeybee, Apis mellifera, and the stingless bee, Partamona helleri, to commercial formulations of the insecticides deltamethrin and imidacloprid. The toxicity of fungicides based on thiophanate-methyl and chlorothalonil were investigated individually and in combination, and with the insecticides. Results showed that stingless bees were more susceptible to insecticides than honeybees. The commercial fungicides thiophanate-methyl or chlorothalonil caused low mortality, regardless of concentration; however, their combination was as toxic as imidacloprid to both species, and over 400-fold more toxic than deltamethrin for A. mellifera. There were highly synergistic effects on mortality caused by interactions in the mixture of imidacloprid and the fungicides thiophanate-methyl, chlorothalonil and the combined fungicide formulation in A. mellifera, and also to a lesser extent in P. helleri. By contrast, mixtures of the deltamethrin and the combined fungicide formulation induced high synergy in P. helleri, but had little effect on the mortality of A. mellifera. Differences in physiology and modes of action of agrochemicals are discussed as key factors underlying the differences in susceptibility to agrochemicals.

18.
Pest Manag Sci ; 73(7): 1438-1445, 2017 Jul.
Article in English | MEDLINE | ID: mdl-27860205

ABSTRACT

BACKGROUND: The thrips Frankliniella schultzei is an important watermelon pest. Nevertheless, economic injury levels and sampling plans for this pest have not yet been determined for this crop. Thus, the objective of the present study was to determine the economic injury levels and develop sequential sampling plans for F. schultzei in conditions of low, medium and high fruit prices. RESULTS: The attack of F. schultzei on watermelon plants at the vegetative stage reduced the crop's productivity, which did not happen at the flowering and fruiting stage. The economic injury levels were 0.09, 0.04 and 0.02 thrips leaf-1 when the watermelon price was low ($US 62.5 t-1 ), medium ($US 140.63 t-1 ) and high ($US 218.75 t-1 ) respectively. The three sequential sampling plans for F. schultzei generated for the economic injury levels resulted in similar and more rapid decisions compared with the conventional plan, especially when the pest density was high. CONCLUSIONS: The three economic injury levels and the sequential sampling plans generated in the present study can be incorporated into integrated pest management programmes for watermelon crops because these plans provide a rapid and adequate control decision for F. schultzei. © 2016 Society of Chemical Industry.


Subject(s)
Citrullus , Fruit/economics , Insect Control/economics , Thysanoptera , Animals , Crops, Agricultural , Insect Control/methods , Plant Leaves
19.
ScientificWorldJournal ; 2014: 492138, 2014.
Article in English | MEDLINE | ID: mdl-24600325

ABSTRACT

Corymbia citriodora and Cymbopogon nardus essential oils samples were analyzed by GC and GC-MS and their qualitative and quantitative compositions established. The main component of essential oils of C. citriodora and C. nardus was citronellal, at 61.78% and 36.6%, respectively. The essential oils and citronellal were tested for their fumigant antifungal activity against Pyricularia (Magnaporthe) grisea, Aspergillus spp., and Colletotrichum musae. The minimum inhibitory concentration (MIC) ranged from 100 to 200 ppm for the essential oils and 25 to 50 mg · mL(-1) for citronellal. The contact assay using the essential oils and citronellal showed growth inhibition of the three fungal species. However, a concentration of 1.47 mg · mL(-1) only reduced the inhibition of Aspergillus growth to 90% at 14 days of exposure. For the fumigant assay, 0.05, 0.11, and 0.23 mg · mL(-1) of essential oils and citronellal drastically affected growth of P. grisea, Aspergillus spp., and C. musae. Harmful effects on the sporulation and germination of the three fungi were seen, and there was complete inhibition at 0.15 mg · mL(-1) with both oils and citronellal. This showed that the crude component of essential oils of C. citriodora and C. nardus markedly suppressed spore production, germination, and growth inhibition of P. grisea, Aspergillus spp., and Colletotrichum musae.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus/growth & development , Colletotrichum/growth & development , Cymbopogon/chemistry , Magnaporthe/growth & development , Myrtaceae/chemistry , Oils, Volatile/pharmacology , Antifungal Agents/chemistry , Oils, Volatile/chemistry
20.
Recent Pat Food Nutr Agric ; 3(2): 142-54, 2011 May.
Article in English | MEDLINE | ID: mdl-21428869

ABSTRACT

There is a need to implement a new approach to pest control in which agroecological strategies are developed and adapted in a site-specific way to highly variable and diverse farm conditions typical of farms in tropical regions such as Brazil. It has become evident that the conventional agriculture based on high use of external inputs and oriented to maximize profits, has often been detrimental and unviable when considered from social and ecological perspectives. Pest problems, for example, are generally related to high input, single-crop agroecosystems. We discuss here agroecological strategies such as conservation biological control, use of natural pesticides and selectivity of synthetic and natural pesticides as a way to conserve and increase natural enemies' efficiency in Brazilian agroecosystems. In addition, we discuss some patents related to agroecological pest management.


Subject(s)
Agriculture/methods , Arthropods , Patents as Topic , Pest Control/methods , Pesticides , Animals , Brazil , Conservation of Natural Resources , Pest Control, Biological/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...