Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 34(8): e2107205, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34873762

ABSTRACT

Relative humidity is simultaneously a sensing target and a contaminant in gas and volatile organic compound (VOC) sensing systems, where strategies to control humidity interference are required. An unmet challenge is the creation of gas-sensitive materials where the response to humidity is controlled by the material itself. Here, humidity effects are controlled through the design of gelatin formulations in ionic liquids without and with liquid crystals as electrical and optical sensors, respectively. In this design, the anions [DCA]- and [Cl]- of room temperature ionic liquids from the 1-butyl-3-methylimidazolium family tailor the response to humidity and, subsequently, sensing of VOCs in dry and humid conditions. Due to the combined effect of the materials formulations and sensing mechanisms, changing the anion from [DCA]- to the much more hygroscopic [Cl]- , leads to stronger electrical responses and much weaker optical responses to humidity. Thus, either humidity sensors or humidity-tolerant VOC sensors that do not require sample preconditioning or signal processing to correct humidity impact are obtained. With the wide spread of 3D- and 4D-printing and intelligent devices, the monitoring and tuning of humidity in sustainable biobased materials offers excellent opportunities in e-nose sensing arrays and wearable devices compatible with operation at room conditions.

2.
ISOEN 2019 (2019) ; 2019: 1-3, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-35939279

ABSTRACT

The materials described in this work result from the self-assembly of liquid crystals and ionic liquids into droplets, stabilized within a biopolymeric matrix. These systems are extremely versatile gels, in terms of composition, and offer potential for fine tuning of both structure and function, as each individual component can be varied. Here, the characterization and application of these gels as sensing thin films in gas sensor devices is presented. The unique supramolecular structure of the gels is explored for molecular recognition of volatile organic compounds (VOCs) by employing gels with distinct formulations to yield combinatorial optical and electrical responses used in the distinction and identification of VOCs.

3.
Mater Today Bio ; 1: 100002, 2019 Jan.
Article in English | MEDLINE | ID: mdl-32159137

ABSTRACT

Artificial olfaction is a fast-growing field aiming to mimic natural olfactory systems. Olfactory systems rely on a first step of molecular recognition in which volatile organic compounds (VOCs) bind to an array of specialized olfactory proteins. This results in electrical signals transduced to the brain where pattern recognition is performed. An efficient approach in artificial olfaction combines gas-sensitive materials with dedicated signal processing and classification tools. In this work, films of gelatin hybrid gels with a single composition that change their optical properties upon binding to VOCs were studied as gas-sensing materials in a custom-built electronic nose. The effect of films thickness was studied by acquiring signals from gelatin hybrid gel films with thicknesses between 15 and 90 µm when exposed to 11 distinct VOCs. Several features were extracted from the signals obtained and then used to implement a dedicated automatic classifier based on support vector machines for data processing. As an optical signature could be associated to each VOC, the developed algorithms classified 11 distinct VOCs with high accuracy and precision (higher than 98%), in particular when using optical signals from a single film composition with 30 µm thickness. This shows an unprecedented example of soft matter in artificial olfaction, in which a single gelatin hybrid gel, and not an array of sensing materials, can provide enough information to accurately classify VOCs with small structural and functional differences.

SELECTION OF CITATIONS
SEARCH DETAIL
...