Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; 43(20): 3084-3096, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33843467

ABSTRACT

Fouling mechanisms are mainly caused by the deposition of organic compounds that reduce the removal efficiency on reverse osmosis (RO) membranes. It can be described by mathematical models. The aim of this study was to evaluate the membrane fouling and rejection mechanisms when aqueous solutions containing 17α-ethinylestradiol (EE2) in different concentrations are permeated at 5 and 10 bar in a bench-scale dead-end RO system. Adsorption tests were performed and the fouling mechanism was assessed by Hermia's model for solutions of EE2 at concentrations typically found in the environment (µg L-1). Fourier transform infrared spectroscopy (FTIR) has indicated the presence of EE2 on the fouled membrane surface. Membrane rejection of EE2 ranged from 90% to 98% and the main rejection mechanism was size exclusion at all experimental conditions. However, for the higher concentration of EE2 permeated at 5 and 10 bar, adsorption of 7 and 32 mg m-2, respectively, also took place. The rejection was influenced by fouling and concentration polarisation. Fouled membranes present higher rejection of hydrophobic neutral compounds and the concentration polarisation reduces rejection. Hermia's model demonstrated that the permeation values fitted better the standard blocking filtration and cake filtration equations for describing fouling mechanism. This study showed that fouling also occurs in the TFC RO membrane after permeation of EE2, which corroborates with studies using other pollutants.


Subject(s)
Water Purification , Ethinyl Estradiol , Filtration , Membranes, Artificial , Osmosis , Water Purification/methods
2.
Water Sci Technol ; 80(11): 2169-2178, 2019 Dec.
Article in English | MEDLINE | ID: mdl-32198334

ABSTRACT

Removal of an endocrine disrupting compound, Bisphenol A (BPA), from water was investigated using two treatment processes, UV/H2O2 advanced oxidation (AOP) and reverse osmosis (membrane separation). Furthermore, changes in estrogenic activity using in vitro yeast estrogen screen assay as well as the adsorption of BPA by the membrane surface were evaluated. The best UV/H2O2 performance was obtained using the highest established values of all parameters, reaching 48% BPA removal. Within the investigated conditions of the AOP, when lower doses of UV were used, a higher removal efficiency was achieved at a higher initial concentration of BPA. However, the same behavior was not observed for the highest UV dose, in which the removal efficiency was not dependent on BPA initial concentration. In both cases, removal efficiency increased as H2O2 concentration increased. The formation of estrogenic by-products was observed in UV/H2O2. The membrane rejection efficiency varied from 60% to 84% and all experiments showed adsorption of BPA by the membrane surface. The RO membrane showed a greater BPA removal efficiency for samples containing 10 µg·L-1 than UV/H2O2 at the evaluated treatment conditions.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Benzhydryl Compounds , Hydrogen Peroxide , Osmosis , Phenols , Ultraviolet Rays , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...