Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
PLoS Comput Biol ; 17(9): e1008380, 2021 09.
Article in English | MEDLINE | ID: mdl-34478440

ABSTRACT

For various species, high quality sequences and complete genomes are nowadays available for many individuals. This makes data analysis challenging, as methods need not only to be accurate, but also time efficient given the tremendous amount of data to process. In this article, we introduce an efficient method to infer the evolutionary history of individuals under the multispecies coalescent model in networks (MSNC). Phylogenetic networks are an extension of phylogenetic trees that can contain reticulate nodes, which allow to model complex biological events such as horizontal gene transfer, hybridization and introgression. We present a novel way to compute the likelihood of biallelic markers sampled along genomes whose evolution involved such events. This likelihood computation is at the heart of a Bayesian network inference method called SnappNet, as it extends the Snapp method inferring evolutionary trees under the multispecies coalescent model, to networks. SnappNet is available as a package of the well-known beast 2 software. Recently, the MCMC_BiMarkers method, implemented in PhyloNet, also extended Snapp to networks. Both methods take biallelic markers as input, rely on the same model of evolution and sample networks in a Bayesian framework, though using different methods for computing priors. However, SnappNet relies on algorithms that are exponentially more time-efficient on non-trivial networks. Using simulations, we compare performances of SnappNet and MCMC_BiMarkers. We show that both methods enjoy similar abilities to recover simple networks, but SnappNet is more accurate than MCMC_BiMarkers on more complex network scenarios. Also, on complex networks, SnappNet is found to be extremely faster than MCMC_BiMarkers in terms of time required for the likelihood computation. We finally illustrate SnappNet performances on a rice data set. SnappNet infers a scenario that is consistent with previous results and provides additional understanding of rice evolution.


Subject(s)
Markov Chains , Monte Carlo Method , Phylogeny , Algorithms , Bayes Theorem , Computational Biology/methods , Evolution, Molecular , Genes, Plant , Likelihood Functions , Oryza/classification , Oryza/genetics
2.
Rice (N Y) ; 14(1): 44, 2021 May 20.
Article in English | MEDLINE | ID: mdl-34014423

ABSTRACT

Understanding crops genetic diversity and the evolutionary processes that accompanied their worldwide spread is useful for designing effective breeding strategies. Madagascar Island was one of the last major Old World areas where human settlement brought the introduction of Oryza sativa. Early studies in the island had reported the presence of a rice group specific to Madagascar. Using 24 K SNP, we compared diversity patterns at the whole genome and at haplotype (30 SNP-long segments along the genome) levels, between 620 Malagasy and 1929 Asian rice accessions. The haplotype level analysis aimed at identifying local genotypic variations, relative to the whole genome level, using a group assignment method that relies on kernel density estimation in a Principal Component Analysis feature space. Migration bottleneck had resulted in 10-25% reduction of diversity among the Malagasy representatives of indica and japonica populations. Compared to their Asian counterpart, they showed slightly lower indica and japonica introgressions, suggesting the two populations had undergone less recombination when migration to the island occurred. The origins of the Malagasy indica and japonica groups were delineated to indica subpopulation from the Indian subcontinent and to tropical japonica from the Malay Archipelago, respectively. The Malagasy-specific group (Gm) had a rather high gene diversity and an original haplotype pattern: much lower share of indica haplotypes, and much higher share of Aus and japonica haplotypes than indica. Its emergence and expansion are most probably due to inter-group recombination facilitated by sympatry between indica-Aus admixes and "Bulu" type landraces of japonica in the central high plateaux of Madagascar, and to human selection for adaptation to the lowland rice cultivation. Pattern of rice genetic diversity was also tightly associated with the history of human settlement in the island. Emergence of the Gm group is associated with the latest arrivals of Austronesians, who founded the Merina kingdom in the high plateaux and developed lowland rice cultivation. As an intermediary form between Aus, indica and japonica, the three pillars of O. sativa domestication, Gm represents a very valuable genetic resource in breeding for adaptation to cold tolerance in tropical highlands. We proposed the name Rojo for this new rice group.

3.
Biochem J ; 477(13): 2561-2580, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32573649

ABSTRACT

Cystic Fibrosis (CF), the most common lethal autosomic recessive disorder among Caucasians, is caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein, a cAMP-regulated chloride channel expressed at the apical surface of epithelial cells. Cyclic AMP regulates both CFTR channel gating through a protein kinase A (PKA)-dependent process and plasma membane (PM) stability through activation of the exchange protein directly activated by cAMP1 (EPAC1). This cAMP effector, when activated promotes the NHERF1:CFTR interaction leading to an increase in CFTR at the PM by decreasing its endocytosis. Here, we used protein interaction profiling and bioinformatic analysis to identify proteins that interact with CFTR under EPAC1 activation as possible regulators of this CFTR PM anchoring. We identified an enrichment in cytoskeleton related proteins among which we characterized CAPZA2 and INF2 as regulators of CFTR trafficking to the PM. We found that CAPZA2 promotes wt-CFTR trafficking under EPAC1 activation at the PM whereas reduction of INF2 levels leads to a similar trafficking promotion effect. These results suggest that CAPZA2 is a positive regulator and INF2 a negative one for the increase of CFTR at the PM after an increase of cAMP and concomitant EPAC1 activation. Identifying the specific interactions involving CFTR and elicited by EPAC1 activation provides novel insights into late CFTR trafficking, insertion and/or stabilization at the PM and highlighs new potential therapeutic targets to tackle CF disease.


Subject(s)
CapZ Actin Capping Protein/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cytoskeleton/metabolism , Formins/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Biotinylation/genetics , Biotinylation/physiology , Blotting, Western , CapZ Actin Capping Protein/genetics , Cell Line , Computational Biology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Formins/genetics , Gene Ontology , Guanine Nucleotide Exchange Factors/genetics , Humans , Immunoprecipitation , Mass Spectrometry , Protein Transport/genetics , Protein Transport/physiology , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction/genetics , Signal Transduction/physiology
4.
Int J Mol Sci ; 21(8)2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32326361

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). A single recessive mutation, the deletion of phenylalanine 508 (F508del), causes severe CF and resides on 70% of mutant chromosomes. Disorganization of the actin cytoskeleton has been previously reported in relation to the CF phenotype. In this work, we aimed to understand this alteration by means of Atomic Force Microscopy and Force Feedback Microscopy investigation of mechanical properties of cystic fibrosis bronchial epithelial (CFBE) cells stably transduced with either wild type (wt-) or F508del-CFTR. We show here that the expression of mutant CFTR causes a decrease in the cell's apparent Young modulus as compared to the expression of the wt protein.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Epithelial Cells/metabolism , Gene Expression , Mechanical Phenomena , Mutation , Respiratory Mucosa/metabolism , Humans , Microscopy, Atomic Force , Respiratory Mucosa/pathology
5.
Front Pharmacol ; 10: 619, 2019.
Article in English | MEDLINE | ID: mdl-31231217

ABSTRACT

In cystic fibrosis, the most common disease-causing mutation is F508del, which causes not only intracellular retention and degradation of CFTR, but also defective channel gating and decreased membrane stability of the small amount that reaches the plasma membrane (PM). Thus, pharmacological correction of mutant CFTR requires targeting of multiple cellular defects in order to achieve clinical benefit. Although small-molecule compounds have been identified and commercialized that can correct its folding or gating, an efficient retention of F508del CFTR at the PM has not yet been explored pharmacologically despite being recognized as a crucial factor for improving functional rescue of chloride transport. In ongoing efforts to determine the CFTR interactome at the PM, we used three complementary approaches: targeting proteins binding to tyrosine-phosphorylated CFTR, protein complexes involved in cAMP-mediated CFTR stabilization at the PM, and proteins selectively interacting at the PM with rescued F508del-CFTR but not wt-CFTR. Using co-immunoprecipitation or peptide-pull down strategies, we identified around 400 candidate proteins through sequencing of complex protein mixtures using the nano-LC Triple TOF MS technique. Key candidate proteins were validated for their robust interaction with CFTR-containing protein complexes and for their ability to modulate the amount of CFTR expressed at the cell surface of bronchial epithelial cells. Here, we describe how we explored the abovementioned experimental datasets to build a protein interaction network with the aim of identifying novel pharmacological targets to rescue CFTR function in cystic fibrosis (CF) patients. We identified and validated novel candidate proteins that were essential components of the network but not detected in previous proteomic analyses.

6.
Genome Biol Evol ; 11(5): 1358-1373, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31002105

ABSTRACT

Modern rice cultivars are adapted to a range of environmental conditions and human preferences. At the root of this diversity is a marked genetic structure, owing to multiple foundation events. Admixture and recurrent introgression from wild sources have played upon this base to produce the myriad adaptations existing today. Genome-wide studies bring support to this idea, but understanding the history and nature of particular genetic adaptations requires the identification of specific patterns of genetic exchange. In this study, we explore the patterns of haplotype similarity along the genomes of a subset of rice cultivars available in the 3,000 Rice Genomes data set. We begin by establishing a custom method of classification based on a combination of dimensionality reduction and kernel density estimation. Through simulations, the behavior of this classifier is studied under scenarios of varying genetic divergence, admixture, and alien introgression. Finally, the method is applied to local haplotypes along the genome of a Core set of Asian Landraces. Taking the Japonica, Indica, and cAus groups as references, we find evidence of reciprocal introgressions covering 2.6% of reference genomes on average. Structured signals of introgression among reference accessions are discussed. We extend the analysis to elucidate the genetic structure of the group circum-Basmati: we delimit regions of Japonica, cAus, and Indica origin, as well as regions outlier to these groups (13% on average). Finally, the approach used highlights regions of partial to complete loss of structure that can be attributed to selective pressures during domestication.


Subject(s)
Genome, Plant , Oryza/genetics , Asia , Domestication , Haplotypes , Hybridization, Genetic , Oryza/classification
7.
Cells ; 8(4)2019 04 14.
Article in English | MEDLINE | ID: mdl-31014000

ABSTRACT

The most common cystic fibrosis-causing mutation (F508del, present in ~85% of CF patients) leads to CFTR misfolding, which is recognized by the endoplasmic reticulum (ER) quality control (ERQC), resulting in ER retention and early degradation. It is known that CFTR exit from the ER is mediated by specific retention/sorting signals that include four arginine-framed tripeptide (AFT) retention motifs and a diacidic (DAD) exit code that controls the interaction with the COPII machinery. Here, we aim at obtaining a global view of the protein interactors that regulate CFTR exit from the ER. We used mass spectrometry-based interaction proteomics and bioinformatics analyses to identify and characterize proteins interacting with selected CFTR peptide motifs or full-length CFTR variants retained or bypassing these ERQC checkpoints. We conclude that these ERQC trafficking checkpoints rely on fundamental players in the secretory pathway, detecting key components of the protein folding machinery associated with the AFT recognition and of the trafficking machinery recognizing the diacidic code. Furthermore, a greater similarity in terms of interacting proteins is observed for variants sharing the same folding defect over those reaching the same cellular location, evidencing that folding status is dominant over ER escape in shaping the CFTR interactome.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/metabolism , Cell Line , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Humans , Mutation , Protein Folding , Protein Transport , Proteomics , Respiratory Mucosa/metabolism
8.
Cell Mol Life Sci ; 75(24): 4495-4509, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30066085

ABSTRACT

Misfolded F508del-CFTR, the main molecular cause of the recessive disorder cystic fibrosis, is recognized by the endoplasmic reticulum (ER) quality control (ERQC) resulting in its retention and early degradation. The ERQC mechanisms rely mainly on molecular chaperones and on sorting motifs, whose presence and exposure determine CFTR retention or exit through the secretory pathway. Arginine-framed tripeptides (AFTs) are ER retention motifs shown to modulate CFTR retention. However, the interactions and regulatory pathways involved in this process are still largely unknown. Here, we used proteomic interaction profiling and global bioinformatic analysis to identify factors that interact differentially with F508del-CFTR and F508del-CFTR without AFTs (F508del-4RK-CFTR) as putative regulators of this specific ERQC checkpoint. Using LC-MS/MS, we identified kinesin family member C1 (KIFC1) as a stronger interactor with F508del-CFTR versus F508del-4RK-CFTR. We further validated this interaction showing that decreasing KIFC1 levels or activity stabilizes the immature form of F508del-CFTR by reducing its degradation. We conclude that the current approach is able to identify novel putative therapeutic targets that can be ultimately used to the benefit of CF patients.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Kinesins/metabolism , Protein Interaction Maps , Proteomics/methods , Amino Acid Sequence , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Down-Regulation , HEK293 Cells , Humans , Kinesins/genetics , Mutation , Protein Folding , Protein Interaction Mapping/methods , Proteolysis
9.
ChemMedChem ; 13(14): 1469-1478, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29864241

ABSTRACT

Cystic fibrosis (CF) is caused by mutations in the gene that encodes the CF transmembrane conductance regulator (CFTR) protein. The most common mutation, F508del, leads to almost total absence of CFTR at the plasma membrane, a defect potentially corrected via drug-based therapies. Herein, we report the first proof-of-principle study of a noninvasive imaging probe able to detect CFTR at the plasma membrane. We radiolabeled the CFTR inhibitor, CFTRinh -172a, with technetium-99m via a pyrazolyl-diamine chelating unit, yielding a novel 99m Tc(CO)3 complex. A non-radioactive surrogate showed that the structural modifications introduced in the inhibitor did not affect its activity. The radioactive complex was able to detect plasma membrane CFTR, shown by its significantly higher uptake in wild-type versus mutated cells. Furthermore, assessment of F508del CFTR pharmacological correction in human cells using the radioactive complex revealed differences in corrector versus control uptake, recapitulating the biochemical correction observed for the protein.


Subject(s)
Benzoates/chemistry , Cell Membrane/chemistry , Cystic Fibrosis Transmembrane Conductance Regulator/analysis , Radiopharmaceuticals/chemistry , Technetium/chemistry , Thiazolidines/chemistry , Cell Line , Cell Membrane/genetics , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Diamines/chemistry , Humans , Mutation , Pyrazoles/chemistry
10.
Ecol Evol ; 6(22): 8193-8204, 2016 11.
Article in English | MEDLINE | ID: mdl-27878088

ABSTRACT

For elusive mammals like bats, colonization of new areas and colony formation are poorly understood, as is their relationship with the genetic structure of populations. Understanding dispersal and group formation behaviors is critical not only for a better comprehension of mammalian social dynamics, but also for guiding conservation efforts of rare and endangered species. Using nuclear and mitochondrial markers, we studied patterns of genetic diversity and differentiation among and within breeding colonies of giant noctule bats (Nyctalus lasiopterus), their relation to a new colony still in formation, and the impact of this ongoing process on the regionwide genetic makeup. Nuclear differentiation among colonies was relatively low and mostly nonsignificant. Mitochondrial variation followed this pattern, contrasting with findings for other temperate bat species. Our results suggest that this may indicate a recent population expansion. On average, female giant noctules were not more closely related to other colony members than to foreign individuals. This was also true for members of the newly forming colony and those of another, older group sampled shortly after its formation, suggesting that contrary to findings for other temperate bats, giant noctule colonies are not founded by relatives. However, mother-daughter pairs were found in the same populations more often than expected under random dispersal. Given this indication of philopatry, the lack of mitochondrial differentiation among most colonies in the region is probably due to the combination of a recent population expansion and group formation events.

SELECTION OF CITATIONS
SEARCH DETAIL
...