Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Oecologia ; 203(3-4): 453-465, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37971560

ABSTRACT

In seasonal environments, many organisms evolve strategies such as diapause to survive stressful periods. Understanding the link between habitat stability and diapause strategy can help predict a population's survival in a changing world. Indeed, resting stages may be an important way freshwater organisms can survive periods of drought or freezing, and as the frequency and extent of drought or freezing vary strongly among habitats and are predicted to change with climate change, it raises questions about how organisms cope with, and survive, environmental stress. Using Daphnia magna as a model system, we tested the ability of resting stages from different populations to cope with stress during diapause. The combination of elevated temperatures and wet conditions during diapause shows to prevent hatching altogether. In contrast, hatching is relatively higher after a dry and warm diapause, but declines with rising temperatures, while time to hatch increases. Resting stages produced by populations from summer-dry habitats perform slightly, but consistently, better at higher temperatures and dryness, supporting the local adaptation hypothesis. A higher trehalose content in resting eggs from summer-dry habitat might explain such pattern. Considering that temperatures and summer droughts are projected to increase in upcoming years, it is fundamental to know how resting stages resist stressful conditions so as to predict and protect the ecological functioning of freshwater ecosystems.


Subject(s)
Diapause , Zooplankton , Animals , Ecosystem , Ponds , Fresh Water
2.
Neurol Sci ; 44(6): 2173-2176, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36913149

ABSTRACT

PURPOSE: Heterozygous variants in PRRT2 are mostly associated with benign phenotypes, being the major genetic cause of benign familial infantile seizures (BFIS), as well as in paroxysmal disorders. We report two children from unrelated families with BFIS that evolved to encephalopathy related to status epilepticus during sleep (ESES). METHODS AND RESULTS: Two probands presented with focal motor seizures at 3 months of age, with a limited course. Both children presented, at around 5 years of age, with centro-temporal interictal epileptiform discharges with a source in the frontal operculum, markedly activated by sleep, and associated with stagnation on neuropsychological development. Whole-exome sequencing and co-segregation analysis revealed a frameshift mutation c.649dupC in the proline-rich transmembrane protein 2 (PRRT2) in both probands and all affected family members. CONCLUSION: The mechanism leading to epilepsy and the phenotypic variability of PRRT2 variants remain poorly understood. However, its wide cortical and subcortical expression, in particular in the thalamus, could partially explain both the focal EEG pattern and the evolution to ESES. No variants in the PRRT2 gene have been previously reported in patients with ESES. Due to the rarity of this phenotype, other possible causative cofactors are likely contributing to the more severe course of BFIS in our probands.


Subject(s)
Epilepsy, Benign Neonatal , Status Epilepticus , Humans , Epilepsy, Benign Neonatal/complications , Epilepsy, Benign Neonatal/genetics , Membrane Proteins/genetics , Mutation/genetics , Nerve Tissue Proteins/genetics , Phenotype , Seizures/genetics , Seizures/complications , Status Epilepticus/genetics
3.
Biol Lett ; 18(2): 20210615, 2022 02.
Article in English | MEDLINE | ID: mdl-35135311

ABSTRACT

Environmental fluctuations often select for adaptations such as diapause states, allowing species to outlive harsh conditions. The natural sugar trehalose which provides both cryo- and desiccation-protection, has been found in diapause stages of diverse taxa. Here, we hypothesize that trehalose deposition in resting stages is a locally adapted trait, with higher concentrations produced in harsher habitats. We used resting stages, produced under standardized conditions, by 37 genotypes of Daphnia magna collected from Western Palaearctic habitats varying in their propensity to dry in summer and freeze in winter. Resting eggs produced by D. magna from populations from summer-dry habitats showed significantly higher trehalose than those from summer-wet habitats, suggesting that trehalose has a protective function during desiccation. By contrast, winter-freezing did not explain variation in trehalose content. Adaptations to droughts are important, as summer dryness of water bodies is foreseen to increase with ongoing climate change.


Subject(s)
Daphnia , Diapause , Acclimatization , Adaptation, Physiological/genetics , Animals , Daphnia/genetics , Trehalose
4.
Parasitol Res ; 119(6): 1975-1980, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32333110

ABSTRACT

Gnathiid isopods are marine ectoparasites that feed on the blood of fishes that have been implicated as vectors of blood parasites, with transmission possibly occurring through biting during their parasitic life-stages, or through ingestion by fishes. However, evidence for their role as vectors is limited, reflecting the small number of research groups working on them. Here, we used a molecular barcode approach to identify fish hosts and apicomplexan parasites in free-living gnathiids from the eastern Caribbean Sea, with the goal of further evaluating their potential role as reservoirs and/or vectors for these parasites. Apicomplexa were only identified in 8% of the Gnathia analyzed, and in four cases we could identify both Apicomplexa and fish host DNA. The results further suggest that Gnathia spp. in this region may serve as reservoirs for Apicomplexa, but whether they are vectors for this parasite remains uncertain.


Subject(s)
Apicomplexa/isolation & purification , Fish Diseases/parasitology , Isopoda/parasitology , Animals , Caribbean Region , Coral Reefs , DNA Barcoding, Taxonomic , Disease Vectors , Fishes/parasitology
5.
J Parasitol ; 105(6): 913-917, 2019 12.
Article in English | MEDLINE | ID: mdl-31815596

ABSTRACT

Hemosporidians are a monophyletic group of protozoan parasites infecting all terrestrial vertebrate orders. Although Plasmodium is the most studied genus within the Haemosporidia, this research effort is heavily biased toward mammal and bird hosts. We screened 205 specimens of at least 18 reptile species from Brazil using a partial mitochondrial cytochrome b gene marker. Positive samples were sequenced and included in a phylogenetic assessment. Four positive PCR products matched others identified as Plasmodium using BLAST from 3 different host species, Ameiva ameiva, Tropidurus hispidus, and Hemidactylus mabouia. Recovery of similar haplotypes in the native T. hispidus and exotic H. mabouia (99.9%) indicate potential host-switching.


Subject(s)
Malaria/veterinary , Plasmodium/genetics , Reptiles/parasitology , Animals , Bayes Theorem , Brazil/epidemiology , Cytochromes b/genetics , DNA, Protozoan/chemistry , DNA, Protozoan/isolation & purification , Genetic Variation , Haplotypes , Likelihood Functions , Lizards/parasitology , Malaria/epidemiology , Malaria/parasitology , Mass Screening/methods , Mass Screening/veterinary , Phylogeny , Phylogeography , Plasmodium/classification , Plasmodium/isolation & purification , Polymerase Chain Reaction/veterinary , Prevalence , Sequence Alignment/veterinary
6.
Front Microbiol ; 10: 716, 2019.
Article in English | MEDLINE | ID: mdl-31024495

ABSTRACT

The broadstripe cleaning goby Elacatinus prochilos has two alternative ecotypes: sponge-dwellers, which live in large groups and feed mainly upon nematode parasites; and coral-dwellers, that live in small groups or in solitude and behave as cleaners. Recent studies focusing on the skin and gut microbiomes of tropical fish showed that microbial communities are influenced mainly by diet and host species. Here, we compare the skin and gut microbiomes of the Caribbean broadstripe cleaning goby E. prochilos alternative ecotypes (cleaners and non-cleaners) from Barbados and predict that different habitat use and behavior (cleaning vs. non-cleaning) will translate in different bacterial profiles between the two ecotypes. We found significant differences in both alpha- and beta-diversity of skin and gut microbiomes belonging to different ecotypes. Importantly, the skin microbiome of obligate cleaners showed greater intra-sample diversity and harbored a significantly higher prevalence of potential fish pathogens. Likewise, potential pathogens were also more prevalent in the gut of obligate cleaners. We suggest that habitat use, diet, but also direct contact with potential diseased clientele during cleaning, could be the cause for these patterns.

7.
Biol Lett ; 14(10)2018 10 17.
Article in English | MEDLINE | ID: mdl-30333265

ABSTRACT

Species that are able to solve novel problems through social learning from either a conspecific or a heterospecific may gain a significant advantage in new environments. We tested the ability of a highly successful invasive species, the Italian wall lizard Podarcis sicula, to solve a novel foraging task when social information was available from both a conspecific and an unfamiliar heterospecific (Podarcis bocagei). We found that Italian wall lizards that had access to social information made fewer errors, regardless of whether the demonstrator was a conspecific or a heterospecific, compared to Italian wall lizards that individually learnt the same task. We suggest that social learning could be a previously underappreciated, advantageous mechanism facilitating invasions.


Subject(s)
Lizards/physiology , Animals , Appetitive Behavior , Cues , Female , Introduced Species , Portugal , Social Learning
8.
Folia Parasitol (Praha) ; 652018 Oct 02.
Article in English | MEDLINE | ID: mdl-30348909

ABSTRACT

Tissue samples from wildlife from South Africa were opportunistically collected and screened for haemoprotozoan parasites using nonspecific PCR primers. Samples of 127 individuals were tested, comprising over 50 different species. Haemogregarines were the most commonly identified parasites, but sarcocystids and piroplasmids were also detected. Phylogenetic analyses estimated from the 18S rDNA marker highlighted the occurrence of several novel parasite forms and the detection of parasites in novel hosts. Phylogenetic relationships, which have been recently reviewed, appear to be much more complex than previously considered. Our study highlights the high diversity of parasites circulating in wildlife in this biodiverse region, and the need for further studies to resolve taxonomic issues.


Subject(s)
Apicomplexa/isolation & purification , Biodiversity , Mammals/parasitology , Reptiles/parasitology , Animals , Apicomplexa/classification , DNA, Protozoan/analysis , Host-Parasite Interactions , Protozoan Infections, Animal/parasitology , RNA, Ribosomal, 18S/analysis , South Africa
9.
Syst Parasitol ; 95(4): 367-371, 2018 05.
Article in English | MEDLINE | ID: mdl-29549563

ABSTRACT

Cartilaginous fishes are the oldest jawed vertebrates and are also reported to be the hosts of some of the most basal lineages of Cestoda and Aporocotylidae (Digenea) parasites. Recently a phylogenetic analysis of the coccidia (Apicomplexa) infecting marine vertebrates revealed that the lesser spotted dogfish harbours parasite lineages basal to Eimeria Schneider, 1875 and the group formed by Schellackia Reichenow, 1919, Lankesterella Ames, 1923, Caryospora Leger, 1904 and Isospora Schneider, 1881. In the present study we have found additional lineages of coccidian parasites infecting the cownose ray Rhinoptera bonasus Mitchill and the blue shark Prionace glauca Linnaeus. These lineages were also found as basal to species from the genera Lankesterella, Schellackia, Caryospora and Isospora infecting higher vertebrates. These results confirm previous phylogenetic assessments and suggest that these parasitic lineages first evolved in basal vertebrate hosts (i.e. Chondrichthyes), and that the more derived lineages infect higher vertebrates (e.g. birds and mammals) conforming to the evolution of their hosts. We hypothesise that elasmobranchs might host further ancestral parasite lineages harbouring unknown links of parasite evolution.


Subject(s)
Apicomplexa/physiology , Elasmobranchii/parasitology , Host-Parasite Interactions/physiology , Phylogeny , Animals , Apicomplexa/classification , Biological Evolution , Species Specificity
10.
PeerJ ; 5: e4044, 2017.
Article in English | MEDLINE | ID: mdl-29201561

ABSTRACT

The effects of ice ages on speciation have been well documented for many European and North American taxa. In contrast, very few studies have addressed the consequences of such environmental and topographical changes in North East Asian species. More precisely, the Korean Peninsula offers a unique model to assess patterns and processes of speciation as it hosts the northern- and eastern-most distribution limit of some widespread Asian taxa. Despite this, studies addressing phylogeographic patterns and population genetics in the peninsula and surrounding countries are few and studies for most families are lacking. Here we inferred the phylogenetic relationships of the common toad (Bufo gargarizans) from South Korea and their North East Asian counterpart populations, based on mitochondrial data. Korean B. gargarizans GenBank BLASTs matched few individuals from nearby China, but the presence of a Korean clade suggests isolation on the Korean Peninsula, previous to the last glacial maximum, linked to sea level resurgence. Molecular clock calibrations within this group were used to date the divergence between clades and their relationship to paleo-climatic events in the area. Lack of genetic structure among South Korean populations and strong homogeneity between the Korean and some Chinese localities suggest weak isolation and recent expansion. Geographical projection of continuous coalescent maximum-clade-credibility trees shows an original Chinese expansion towards the Korean Peninsula through the Yellow Sea circa two million years ago with colonisation events dating circa 800 thousand years ago (K. y. a.). Following this colonisation, the data point to outgoing Korean Peninsula dispersal events throughout different periods, towards the North through land, and West through land bridge formations over the Yellow Sea during sea level falls. In accordance, demographic analyses revealed a population expansion in the Koran Peninsula circa 300 K. y. a., likely attributed to glacial cycle fluctuations.

SELECTION OF CITATIONS
SEARCH DETAIL
...