Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(23)2021 Dec 06.
Article in English | MEDLINE | ID: mdl-34885638

ABSTRACT

The refill friction stir spot welding (refill FSSW) process is a solid-state joining process to produce welds without a keyhole in spot joint configuration. This study presents a thermo-mechanical model of refill FSSW, validated on experimental thermal cycles for thin aluminium sheets of AA7075-T6. The temperatures in the weld centre and outside the welding zone at selected points were recorded using K-type thermocouples for more accurate validation of the thermo-mechanical model. A thermo-mechanical three-dimensional refill FSSW model was built using DEFORM-3D. The temperature results from the refill FSSW numerical model are in good agreement with the experimental results. Three-dimensional material flow during plunging and refilling stages is analysed in detail and compared to experimental microstructure and hardness results. The simulation results obtained from the refill FSSW model correspond well with the experimental results. The developed 3D numerical model is able to predict the thermal cycles, material flow, strain, and strain rates which are key factors for the identification and characterization of zones as well for determining joint quality.

2.
Materials (Basel) ; 14(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34443038

ABSTRACT

Friction spot joining is an alternative technique for joining metals with polymers and composites. This study investigated the fatigue performance of aluminum alloy 2024/carbon-fiber-reinforced poly(phenylene sulfide) joints that were produced with friction spot joining. The surface of the aluminum was pre-treated using various surface treatment methods. The joined specimens were tested under dynamic loading using a load ratio of R = 0.1 and a frequency of 5 Hz. The tests were performed at different percentages of the lap shear strength of the joint. Three models-exponential, power law, and wear-out-were used to statistically analyze the fatigue life of the joints and to draw the stress-life (S-N) curves. The joints showed an infinite life of 25-35% of their quasi-static strength at 106 cycles. The joints surpassing 106 cycles were subsequently tested under quasi-static loading, showing no considerable reduction compared to their initial lap shear strength.

SELECTION OF CITATIONS
SEARCH DETAIL
...