Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Dairy Sci ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38908714

ABSTRACT

The rumen microbiome is crucial for converting feed into absorbable nutrients used for milk synthesis, and the efficiency of this process directly impacts the profitability and sustainability of the dairy industry. Recent studies have found that the rumen microbial composition explains part of the variation in feed efficiency traits, including dry matter intake, milk energy, and residual feed intake. The main goal of this study was to reveal relationships between the host genome, rumen microbiome, and dairy cow feed efficiency using structural equation models. Our specific objectives were to (i) infer the mediation effects of the rumen microbiome on feed efficiency traits, (ii) estimate the direct and total heritability of feed efficiency traits, and (iii) calculate the direct and total breeding values of feed efficiency traits. Data consisted of dry matter intake, milk energy, and residual feed intake records, SNP genotype data, and 16S rRNA rumen microbial abundances from 448 mid-lactation Holstein cows from 2 research farms. We implemented structural equation models such that the host genome directly affects the phenotype (GP → P) and the rumen microbiome (GM → P), while the microbiome affects the phenotype (M → P), partially mediating the effect of the host genome on the phenotype (G → M → P). We found that 7 to 30% of microbes within the rumen microbial community had structural coefficients different from zero. We classified these microbes into 3 groups that could have different uses in dairy farming. Microbes with heritability <0.10 but significant causal effects on feed efficiency are attractive for external interventions. On the other hand, 2 groups of microbes with heritability ≥0.10, significant causal effects, and genetic covariances and causal effects with the same or opposite sign to feed efficiency are attractive for selective breeding, improving or decreasing the trait heritability and response to selection, respectively. In general, the inclusion of the different microbes in genomic models tends to decrease the trait heritability rather than increase it, ranging from -15% to +5%, depending on the microbial group and phenotypic trait. Our findings provide more understanding to target rumen microbes that can be manipulated, either through selection or management interventions, to improve feed efficiency traits.

2.
J Dairy Sci ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825121

ABSTRACT

The evaluation of dairy cow feed efficiency using residual feed intake accounts for known energy sinks. However, behavioral traits may also contribute to the variation in feed efficiency. Our objective was to estimate the heritability and repeatability of behavioral traits and their genetic correlations with feed efficiency and its components in lactating Holstein cows. The first data set consisted of 36,075 daily rumination and lying time records collected using a SMARTBOW ear tag accelerometer (Zoetis, Parsippany, NJ) and 6,371 weekly feed efficiency records of 728 cows from the University of Wisconsin-Madison. The second data set consisted of 59,155 daily activity records, measured as number of steps, recorded by pedometers (AfiAct; S.A.E. Afikim, Kibbutz Afikim, Israel), and 8,626 weekly feed efficiency records of 635 cows from the University of Florida. Feed efficiency and its components included dry matter intake, change in body weight, metabolic body weight, secreted milk energy, and residual feed intake. The statistical models included the fixed effect of cohort, lactation number, and days in milk, and the random effects of animal and permanent environment. Heritability estimates for behavioral traits using daily records were 0.19 ± 0.06 for rumination and activity, and 0.37 ± 0.07 for lying time. Repeatability estimates for behavioral traits using daily data ranged from 0.56 ± 0.02 for activity to 0.62 ± 0.01 for lying time. Both heritability and repeatability estimates were larger when weekly records instead of daily records were used. Rumination and activity had positive genetic correlations with residual feed intake (0.40 ± 0.19 and 0.31 ± 0.22, respectively) while lying time had a negative genetic correlation with this residual feed intake (-0.27 ± 0.11). These results indicate that more efficient cows tend to spend more time lying and less time active. Additionally, less efficient cows tend to eat more and therefore also tend to ruminate longer. Overall, sensor-based behavioral traits are heritable and genetically correlated with feed efficiency and its components and, therefore, they could be used as indicators to identify feed efficient cows within the herd.

3.
J Anim Physiol Anim Nutr (Berl) ; 108(4): 950-964, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38379267

ABSTRACT

Objectives were to determine the effects of supplementing rumen-protected choline (RPC) from an established source with low (L, 28.8%) or a prototype with less lipid coating protection and high (H, 60.0%) concentrations of choline chloride on digestibility of fat and supra-mammary lymph metabolome in feed-restricted cows. Pregnant, nonlactating Holstein cows (n = 33; 11/treatment) at mean (±standard deviation) 231 ± 4.7 days of gestation were blocked by body condition (4.23 ± 0.47) and assigned to receive 0 (CON) or 25.8 g/d of choline ion from L (L25.8) or H (H25.8). Cows were adapted to the diet and then fed-restricted to 42% of the net energy of lactation required for maintenance and pregnancy for 9 days. Intake of metabolizable methionine was maintained at 19 g/d. On Day 9, cows were fed 450 g of saturated fatty acids (SFA), and feces and blood were sampled continuously for 24 h. Supra-mammary lymph was sampled 6 h after feeding SFA and metabolome was characterized. Feeding RPC increased digestibility of fat (CON = 80.4 vs. RPC = 86.0 ± 1.9%) and reduced the concentration of haptoglobin in serum (CON = 174 vs. RPC = 77 ± 14 µg/ml) independent of source of RPC fed. Feeding RPC increased the concentrations of triacylglycerol in serum (CON = 15.1 vs. RPC = 17.8 ± 1.9 mg/dl) in feed-restricted cows after feeding SFA, and the increment tended to be greater for cows fed H25.8 than L25.8. Supplementing RPC tended to increase the concentrations of triacylglycerol (CON = 11.4 vs. RPC = 15.8 ± 3.4 mg/dl) in supra-mammary lymph. Feeding RPC increased the concentration of choline and affected the concentrations of analytes involved in metabolic pathways associated with amino acid metabolism and biosynthesis of phospholipids in lymph compared with CON. Feeding RPC, independent of source used, increased fat digestibility with some changes in lymph metabolome in cows under negative nutrient balance.


Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Choline , Diet , Digestion , Rumen , Animals , Cattle/physiology , Choline/pharmacology , Choline/administration & dosage , Female , Animal Feed/analysis , Rumen/metabolism , Rumen/drug effects , Diet/veterinary , Digestion/drug effects , Digestion/physiology , Lymph/metabolism , Metabolome/drug effects , Pregnancy , Dietary Supplements
4.
J Dairy Sci ; 107(2): 1054-1067, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37769947

ABSTRACT

Resilience can be defined as the capacity to maintain performance or bounce back to normal functioning after a perturbation, and studying fluctuations in daily feed intake may be an effective way to identify resilient dairy cows. Our goal was to develop new phenotypes based on daily dry matter intake (DMI) consistency in Holstein cows, estimate genetic parameters and genetic correlations with feed efficiency and milk yield consistency, and evaluate their relationships with production, longevity, health, and reproduction traits. Data consisted of 397,334 daily DMI records of 6,238 lactating Holstein cows collected from 2007 to 2022 at 6 research stations across the United States. Consistency phenotypes were calculated based on the deviations from expected daily DMI for individual cows during their respective feeding trials, which ranged from 27 to 151 d in duration. Expected values were derived from different models, including simple average, quadratic and cubic quantile regression with a 0.5 quantile, and locally estimated scatterplot smoothing (LOESS) regression with span parameters 0.5 and 0.7. We then calculated the log of variance (log-Var-DMI) of daily deviations for each model as the consistency phenotype. Consistency of milk yield was also calculated, as a reference, using the same methods (log-Var-Milk). Genetic parameters were estimated using an animal model, including lactation, days in milk and cohort as fixed effects, and animal as random effect. Relationships between log-Var-DMI and traits currently considered in the US national genetic evaluation were evaluated using Spearman's rank correlations between sires' breeding values. Heritability estimates for log-Var-DMI ranged from 0.11 ± 0.02 to 0.14 ± 0.02 across models. Different methods (simple average, quantile regressions, and LOESS regressions) used to calculate log-Var-DMI yielded very similar results, with genetic correlations ranging from 0.94 to 0.99. Estimated genetic correlations between log-Var-DMI and log-Var-Milk ranged from 0.51 to 0.62. Estimated genetic correlations between log-Var-DMI and feed efficiency ranged from 0.55 to 0.60 with secreted milk energy, from 0.59 to 0.63 with metabolic body weight, and from 0.26 to 0.31 with residual feed intake (RFI). Relationships between log-Var-DMI and the traits in the national genetic evaluation were moderate and positive correlations with milk yield (0.20 to 0.21), moderate and negative correlations with female fertility (-0.07 to -0.20), no significant correlations with health and longevity, and favorable correlations with feed efficiency (-0.23 to -0.25 with feed saved and 0.21 to 0.26 with RFI). We concluded that DMI consistency is heritable and may be an indicator of resilience. Cows with lower variation in the difference between actual and expected daily DMI (more consistency) may be more effective in maintaining performance in the face of challenges or perturbations, whereas cows with greater variation in observed versus expected daily DMI (less consistency) are less feed efficient and may be less resilient.


Subject(s)
Lactation , Milk , Humans , Cattle/genetics , Female , Animals , Lactation/genetics , Milk/metabolism , Eating/genetics , Breeding , Body Weight/genetics , Animal Feed
5.
J Dairy Sci ; 107(5): 3090-3103, 2024 May.
Article in English | MEDLINE | ID: mdl-38135048

ABSTRACT

It is now widely accepted that dairy cow performance is influenced by both the host genome and rumen microbiome composition. The contributions of the genome and the microbiome to the phenotypes of interest are quantified by heritability (h2) and microbiability (m2), respectively. However, if the genome and microbiome are included in the model, then the h2 reflects only the contribution of the direct genetic effects quantified as direct heritability (hd2), and the holobiont effect reflects the joint action of the genome and the microbiome, quantified as the holobiability (ho2). The objectives of this study were to estimate h2, hd2,m2, and ho2 for dry matter intake, milk energy, and residual feed intake; and to evaluate the predictive ability of different models, including genome, microbiome, and their interaction. Data consisted of feed efficiency records, SNP genotype data, and 16S rRNA rumen microbial abundances from 448 mid-lactation Holstein cows from 2 research farms. Three kernel models were fit to each trait: one with only the genomic effect (model G), one with the genomic and microbiome effects (model GM), and one with the genomic, microbiome, and interaction effects (model GMO). The model GMO, or holobiont model, showed the best goodness-of-fit. The hd2 estimates were always 10% to 15% lower than h2 estimates for all traits, suggesting a mediated genetic effect through the rumen microbiome, and m2 estimates were moderate for all traits, and up to 26% for milk energy. The ho2 was greater than the sum of hd2 and m2, suggesting that the genome-by-microbiome interaction had a sizable effect on feed efficiency. Kernel models fitting the rumen microbiome (i.e., models GM and GMO) showed larger predictive correlations and smaller prediction bias than the model G. These findings reveal a moderate contribution of the rumen microbiome to feed efficiency traits in lactating Holstein cows and strongly suggest that the rumen microbiome mediates part of the host genetic effect.


Subject(s)
Lactation , Microbiota , Female , Cattle , Animals , Rumen , RNA, Ribosomal, 16S , Milk , Phenotype , Animal Feed , Diet/veterinary
6.
Sci Rep ; 13(1): 21900, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38082150

ABSTRACT

Periparturient hypocalcemia is a complex metabolic disorder that occurs at the onset of lactation because of a sudden irreversible loss of Ca incorporated into colostrum and milk. Some cows are unable to quickly adapt to this demand and succumb to clinical hypocalcemia, commonly known as milk fever, whereas a larger proportion of cows develop subclinical hypocalcemia. The main goal of this study was to identify causative mutations and candidate genes affecting postpartum blood calcium concentration in Holstein cows. Data consisted of blood calcium concentration measured in 2513 Holstein cows on the first three days after parturition. All cows had genotypic information for 79 k SNP markers. Two consecutive rounds of imputation were performed: first, the 2513 Holstein cows were imputed from 79 k to 312 k SNP markers. This imputation was performed using a reference set of 17,131 proven Holstein bulls with 312 k SNP markers. Then, the 2513 Holstein cows were imputed from 312 k markers to whole-genome sequence data. This second round of imputation used 179 Holstein animals from the 1000 Bulls Genome Project as a reference set. Three alternative phenotypes were evaluated: (1) total calcium concentration in the first 24 h postpartum, (2) total calcium concentration in the first 72 h postpartum calculated as the area under the curve; and (3) the recovery of total calcium concentration calculated as the difference in total calcium concentration between 72 and 24 h. The identification of genetic variants associated with these traits was performed using a two-step mixed model-based approach implemented in the R package MixABEL. The most significant variants were located within or near genes involved in calcium homeostasis and vitamin D transport (GC), calcium and potassium channels (JPH3 and KCNK13), energy and lipid metabolism (CA5A, PRORP, and SREBP1), and immune response (IL12RB2 and CXCL8), among other functions. This work provides the foundation for the development of novel breeding and management tools for reducing the incidence of periparturient hypocalcemia in dairy cattle.


Subject(s)
Cattle Diseases , Hypocalcemia , Puerperal Disorders , Pregnancy , Female , Humans , Cattle , Animals , Male , Hypocalcemia/genetics , Hypocalcemia/veterinary , Hypocalcemia/metabolism , Calcium/metabolism , Postpartum Period/genetics , Parturition/physiology , Lactation/physiology , Milk/metabolism , Calcium, Dietary/metabolism , Diet/veterinary
7.
PLoS One ; 18(10): e0290562, 2023.
Article in English | MEDLINE | ID: mdl-37796906

ABSTRACT

Objectives were to determine the effects of supplementing increasing amounts of choline ion on hepatic composition and mRNA abundance in pregnant dry cows subjected to a fatty liver induction protocol. Holstein cows (35 primiparous and 41 multiparous) at mean (± standard deviation) of 211 ± 9.9 days of gestation were blocked by body condition (3.59 ± 0.33) and assigned to receive 0, 6.45, 12.90, 19.35, and 25.80 g/day of choline ion as rumen-protected choline (RPC) as a top-dress for 14 days. Cows were fed for ad libitum intake on days 1 to 5 and restricted to 30% of the required net energy for lactation from days 6 to 14 of the experiment. Hepatic tissue was sampled on days 5 and 14 and analyzed for concentrations of triacylglycerol and glycogen, and mRNA abundance was investigated. Orthogonal contrasts evaluated the effects of supplementing RPC (0 g/day vs. rest), and the linear, quadratic, and cubic effects of increasing intake of choline ion from 6.45 to 25.80 g/day. Results are depicted in sequence of treatments from 0 to 25.8. During feed restriction, RPC reduced the concentration of hepatic triacylglycerol by 28.5% and increased that of glycogen by 26.1%, and the effect of increasing RPC intake on triacylglycerol was linear (6.67 vs. 5.45 vs. 4.68 vs. 5.13 vs. 3.81 ± 0.92% wet-basis). Feeding RPC during feed restriction increased abundance of transcripts involved in choline metabolism (CHKA, PLD1), synthesis of apolipoprotein-B100 (APOB100), and antioxidant activity (GPX3), and decreased the abundance of transcripts involved in hepatic lipogenesis (DGAT2, SREBF1) and acute phase response (SAA3). Most effects were linear with amount of choline fed. Changes in hepatic mRNA abundance followed a pattern of reduced lipogenesis and enhanced lipids export, which help explain the reduced hepatic triacylglycerol content in cows fed RPC. Choline exerts lipotropic effects in dairy cows by altering transcript pathways linked to hepatic lipids metabolism.


Subject(s)
Choline , Fatty Liver , Pregnancy , Female , Cattle , Animals , Choline/metabolism , Diet/veterinary , Dietary Supplements , Rumen/metabolism , Milk/metabolism , Fatty Liver/metabolism , Lactation/physiology , Liver/metabolism , Triglycerides/metabolism , Glycogen/metabolism , RNA, Messenger/metabolism
8.
Biol Reprod ; 109(4): 415-431, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37540198

ABSTRACT

Endometrial inflammation is associated with reduced pregnancy per artificial insemination (AI) and increased pregnancy loss in cows. It was hypothesized that induced endometritis alters histotroph composition and induces inflammatory signatures on conceptus that compromise development. In Experiment 1, lactating cows were assigned to control (CON; n = 23) or to an intrauterine infusion of Escherichia coli and Trueperella pyogenes (ENDO; n = 34) to induce endometritis. Cows received AI 26 days after treatment, and the uterine fluid and conceptuses were collected on day 16 after AI. In Experiment 2, Holstein heifers were assigned to CON (n = 14) or ENDO (n = 14). An embryo was transferred on day 7 of the estrous cycle, and uterine fluid and conceptuses were recovered on day 16. Composition of histotroph and trophoblast and embryonic disc gene expression were assessed. Bacterial-induced endometritis in lactating cows altered histotroph composition and pathways linked to phospholipid synthesis, cellular energy production, and the Warburg effect. Also, ENDO reduced conceptus length in cows and altered expression of genes involved in pathogen recognition, nutrient uptake, cell growth, choline metabolism, and conceptus signaling needed for maternal recognition of pregnancy. The impact of ENDO was lesser on conceptuses from heifers receiving embryo transfer; however, the affected genes and associated pathways involved restricted growth and increased immune response similar to the observed responses to ENDO in conceptuses from lactating cows. Bacterial-induced endometrial inflammation altered histotroph composition, reduced conceptus growth, and caused embryonic cells to activate survival rather than anabolic pathways that could compromise development.


Subject(s)
Endometritis , Uterine Diseases , Pregnancy , Humans , Cattle , Animals , Female , Endometritis/veterinary , Lactation/physiology , Insemination, Artificial/veterinary , Inflammation
9.
JDS Commun ; 4(3): 201-204, 2023 May.
Article in English | MEDLINE | ID: mdl-37360126

ABSTRACT

Residual feed intake (RFI) has been used as a measure of feed efficiency in farm animals. In lactating dairy cattle, RFI is typically obtained as the difference between dry matter intake observations and predictions from regression on known energy sinks, and effects of parity, days in milk, and cohort. The impact of parity (lactation number) on the estimation of RFI is not well understood, so the objectives of this study were to (1) evaluate alternative RFI models in which the energy sinks (metabolic body weight, body weight change, and secreted milk energy) were nested or not nested within parity, and (2) estimate variance components and genetic correlations for RFI across parities. Data consisted of 72,474 weekly RFI records of 5,813 lactating Holstein cows collected from 2007 to 2022 in 5 research stations across the United States. Estimates of heritability, repeatability, and genetic correlations between weekly RFI for parities 1, 2, and 3 were obtained using bivariate repeatability animal models. The nested RFI model showed better goodness of fit than the nonnested model, and some partial regression coefficients of dry matter intake on energy sinks were heterogeneous between parities. However, the Spearman's rank correlation between RFI values calculated from nested and nonnested models was equal to 0.99. Similarly, Spearman's rank correlation between the RFI breeding values from these 2 models was equal to 0.98. Heritability estimates for RFI were equal to 0.16 for parity 1, 0.19 for parity 2, and 0.22 for parity 3. Repeatability estimates for RFI across weeks within parities were high, ranging from 0.51 to 0.57. Spearman's rank correlations of sires' breeding values were 0.99 between parities 1 and 2, 0.91 between parities 1 and 3, and 0.92 between parities 2 and 3. We conclude that nesting energy sinks within parity when computing RFI improves model goodness of fit, but the impact on the estimated breading values appears to be minimal.

10.
G3 (Bethesda) ; 13(9)2023 08 30.
Article in English | MEDLINE | ID: mdl-36848195

ABSTRACT

Subfertility represents one major challenge to enhancing dairy production and efficiency. Herein, we use a reproductive index (RI) expressing the predicted probability of pregnancy following artificial insemination (AI) with Illumina 778K genotypes to perform single and multi-locus genome-wide association analyses (GWAA) on 2,448 geographically diverse U.S. Holstein cows and produce genomic heritability estimates. Moreover, we use genomic best linear unbiased prediction (GBLUP) to investigate the potential utility of the RI by performing genomic predictions with cross validation. Notably, genomic heritability estimates for the U.S. Holstein RI were moderate (h2 = 0.1654 ± 0.0317-0.2550 ± 0.0348), while single and multi-locus GWAA revealed overlapping quantitative trait loci (QTL) on BTA6 and BTA29, including the known QTL for the daughter pregnancy rate (DPR) and cow conception rate (CCR). Multi-locus GWAA revealed seven additional QTL, including one on BTA7 (60 Mb) which is adjacent to a known heifer conception rate (HCR) QTL (59 Mb). Positional candidate genes for the detected QTL included male and female fertility loci (i.e. spermatogenesis and oogenesis), meiotic and mitotic regulators, and genes associated with immune response, milk yield, enhanced pregnancy rates, and the reproductive longevity pathway. Based on the proportion of the phenotypic variance explained (PVE), all detected QTL (n = 13; P ≤ 5e - 05) were estimated to have moderate (1.0% < PVE ≤ 2.0%) or small effects (PVE ≤ 1.0%) on the predicted probability of pregnancy. Genomic prediction using GBLUP with cross validation (k = 3) produced mean predictive abilities (0.1692-0.2301) and mean genomic prediction accuracies (0.4119-0.4557) that were similar to bovine health and production traits previously investigated.


Subject(s)
Fertility , Genome-Wide Association Study , Pregnancy , Cattle , Animals , Female , Male , Fertility/genetics , Reproduction , Quantitative Trait Loci , Genomics , Polymorphism, Single Nucleotide
11.
Reproduction ; 164(3): 109-123, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35900358

ABSTRACT

In brief: Bovine granulosa cells need to be cultured with serum to generate inflammation in response to bacterial lipopolysaccharide. This study shows that it is cholesterol that facilitates this lipopolysaccharide-stimulated cytokine secretion. Abstract: During bacterial infections of the bovine uterus or mammary gland, ovarian granulosa cells mount inflammatory responses to lipopolysaccharide (LPS). In vitro, LPS stimulates granulosa cell secretion of the cytokines IL-1α and IL-1ß and the chemokine IL-8. These LPS-stimulated inflammatory responses depend on culturing granulosa cells with serum, but the mechanism is unclear. Here, we tested the hypothesis that cholesterol supports inflammatory responses to LPS in bovine granulosa cells. We used granulosa cells isolated from 4 to 8 mm and >8.5 mm diameter ovarian follicles and manipulated the availability of cholesterol. We found that serum or follicular fluid containing cholesterol increased LPS-stimulated secretion of IL-1α and IL-1ß from granulosa cells. Conversely, depleting cholesterol using methyl-ß-cyclodextrin diminished LPS-stimulated secretion of IL-1α, IL-1ß and IL-8 from granulosa cells cultured in serum. Follicular fluid contained more high-density lipoprotein cholesterol than low-density lipoprotein cholesterol, and granulosa cells expressed the receptor for high-density lipoprotein, scavenger receptor class B member 1 (SCARB1). Furthermore, culturing granulosa cells with high-density lipoprotein cholesterol, but not low-density lipoprotein or very low-density lipoprotein cholesterol, increased LPS-stimulated inflammation in granulosa cells. Cholesterol biosynthesis also played a role in granulosa cell inflammation because RNAi of mevalonate pathway enzymes inhibited LPS-stimulated inflammation. Finally, treatment with follicle-stimulating hormone, but not luteinising hormone, increased LPS-stimulated granulosa cell inflammation, and follicle-stimulating hormone increased SCARB1 protein. However, changes in inflammation were not associated with changes in oestradiol or progesterone secretion. Taken together, these findings imply that cholesterol supports inflammatory responses to LPS in granulosa cells.


Subject(s)
Interleukin-8 , Lipopolysaccharides , Animals , Cattle , Cells, Cultured , Cholesterol/metabolism , Estradiol/metabolism , Female , Follicle Stimulating Hormone/pharmacology , Granulosa Cells/metabolism , Inflammation/metabolism , Interleukin-8/metabolism , Lipopolysaccharides/pharmacology , Lipoproteins, HDL/metabolism , Progesterone/metabolism
12.
Theriogenology ; 189: 64-69, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35724454

ABSTRACT

This study aimed to evaluate animal and ovarian parameters that affected fertilization and embryo development up to the morula stage. The data were combined from four studies in which cows were inseminated between 46 and 60 days in milk, following a synchronization protocol, and flushed for embryo collection five or six days later. Parity and body condition score on the day of insemination were recorded. Cyclicity, ovarian structures, and circulating hormone concentrations before and on the day of insemination were also assessed. The recovered structures were graded on a 5-point scale (excellent-good quality, fair quality, poor quality, degenerated, and not fertilized). For recovered embryos, the total number of blastomeres, the number of nonviable blastomeres, and the number of accessory spermatozoa were assessed by epifluorescence microscopy. The risk factors for fertilization and embryo quality were identified using cumulative link mixed models. A total of 418 structures from 389 lactating Holstein cows (34% primiparous and 66% multiparous) were recovered. Thirty-five percent of the recovered structures were excellent-good quality embryos, 21% were fair quality embryos, 11% were poor quality embryos, 16% were degenerated embryos, and 17% were unfertilized oocytes. Structures from primiparous cows, from those with greater progesterone concentration at insemination, and from cows with seven or less accessory spermatozoa were less likely to be fertilized or of better quality than structures from multiparous cows, from those with lower progesterone concentration in plasma, and from those with more than seven accessory spermatozoa, respectively. Embryos with more blastomeres or without nonviable blastomeres were more likely to be of better quality than embryos with fewer blastomeres or with nonviable blastomeres. The results of this analysis highlight the importance of low circulating concentrations of progesterone near artificial insemination and potential positive association with number of accessory spermatozoa reaching the embryo and improvement of embryo development up to the morula stage.


Subject(s)
Lactation , Progesterone , Animals , Cattle , Female , Fertilization , Insemination , Insemination, Artificial/methods , Insemination, Artificial/veterinary , Male , Pregnancy , Spermatozoa
13.
Animal ; 16(5): 100523, 2022 May.
Article in English | MEDLINE | ID: mdl-35468510

ABSTRACT

The SLICK1 mutation in bovine PRLR (c.1382del; rs517047387) is a deletion mutation resulting in a protein with a truncated intracellular domain. Cattle carrying at least one allele have a phenotype characterized by a short hair coat (slick phenotype) and increased resistance to heat stress. Given the pleiotropic nature of prolactin, the mutation may affect other physiological characteristics. The liver is one organ that could potentially be affected because of the expression of PRLR. The mutation is a dominant allele, and heterozygous animals have a similar hair coat to that of animals homozygous for the mutation. Present objectives were to determine whether inheritance of the SLICK1 mutation affects liver gene expression and if animals homozygous for the SLICK1 allele differ from heterozygotes in liver gene expression and regulation of body temperature during heat stress. In one experiment, rectal and ruminal temperatures were less for Holstein heifers that were heterozygous for the SLICK1 allele compared with wildtype heifers. There were 71 differentially expressed genes in liver, with 13 upregulated and 58 downregulated in SLICK1 heterozygotes. Among the ontologies characteristic of differentially expressed genes were those related to immune function and fatty acid and amino acid metabolism. In a prospective cohort study conducted with adult Senepol cattle, body temperature and hepatic gene expression were compared between animals heterozygous or homozygous for the SLICK1 mutation. There were no differences in ruminal temperatures between genotypes, rectal temperature was higher in animals homozygous for the SLICK1 mutation, and there was only one gene in liver that was differentially expressed. It was concluded that inheritance of the SLICK1 allele can exert functional changes beyond those related to hair growth although changes in liver gene expression were not extensive. Results are also consistent with the SLICK1 allele being dominant because there were few differences in phenotype between animals inheriting one or two copies of the allele.


Subject(s)
Cattle Diseases , Heat Stress Disorders , Animals , Body Temperature , Body Temperature Regulation/genetics , Cattle/genetics , Cattle Diseases/genetics , Female , Gene Expression , Gene Expression Regulation , Heat Stress Disorders/veterinary , Liver , Mutation , Prospective Studies
14.
J Dairy Sci ; 105(1): 525-534, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34756434

ABSTRACT

The onset of lactation results in a sudden irreversible loss of Ca for colostrum and milk synthesis. Some cows are unable to quickly adapt to this demand and succumb to clinical hypocalcemia, whereas a larger proportion of cows develop subclinical hypocalcemia that predisposes them to other peripartum diseases. The objective of this study was to perform a comprehensive genomic analysis of blood total Ca concentration in periparturient Holstein cows. We first performed a genomic scan and a subsequent gene-set analysis to identify candidate genes, biological pathways, and molecular mechanisms affecting postpartum Ca concentration. Then, we assessed the prediction of postpartum Ca concentration using genomic information. Data consisted of 7,691 records of plasma or serum concentrations of Ca measured in the first, second, and third day after parturition of 959 primiparous and 1,615 multiparous cows that calved between December 2015 and June 2020 in 2 dairy herds. All cows were genotyped with 80k SNPs. The statistical model included lactation (1 to 5+), calf category (male, females, twins), and day as fixed effects, and season-treatment-experiment, animal, and permanent environmental as random effects. Model predictive ability was evaluated using 10-fold cross-validation. Heritability and repeatability estimates were 0.083 (standard error = 0.017) and 0.444 (standard error = 0.028). The association mapping identified 2 major regions located on Bos taurus autosome (BTA)6 and BTA16 that explained 1.2% and 0.7% of additive genetic variance of Ca concentration, respectively. Interestingly, the region on BTA6 harbors the GC gene, which encodes the vitamin D binding protein, and the region on BTA16 harbors LRRC38, which is actively involved in K transport. Other sizable peaks were identified on BTA5, BTA2, BTA7, BTA14, and BTA9. These regions harbor genes associated with Ca channels (CACNA1S, CRACR2A), K channels (KCNK9), bone remodeling (LRP6), and milk production (SOCS2). The gene-set analysis revealed terms related to vitamin transport, calcium ion transport, calcium ion binding, and calcium signaling. Genomic predictions of phenotypic and genomic estimated breeding values of Ca concentration yielded predictive correlations up to 0.50 and 0.15, respectively. Overall, the present study contributes to a better understanding of the genetic basis of postpartum blood Ca concentration in Holstein cows. In addition, the findings may contribute to the development of novel selection and management strategies for reducing periparturient hypocalcemia in dairy cattle.


Subject(s)
Cattle Diseases , Hypocalcemia , Animals , Calcium , Cattle/genetics , Chromosome Mapping/veterinary , Female , Genomics , Hypocalcemia/veterinary , Lactation , Male , Milk , Postpartum Period
15.
Reproduction ; 161(5): 499-512, 2021 05.
Article in English | MEDLINE | ID: mdl-33651711

ABSTRACT

Bovine granulosa cells are often exposed to energy stress, due to the energy demands of lactation, and exposed to lipopolysaccharide from postpartum bacterial infections. Granulosa cells mount innate immune responses to lipopolysaccharide, including the phosphorylation of mitogen-activated protein kinases and production of pro-inflammatory interleukins. Cellular energy depends on glycolysis, and energy stress activates intracellular AMPK (AMP-activated protein kinase), which in turn inhibits mTOR (mechanistic target of rapamycin). Here, we tested the hypothesis that manipulating glycolysis, AMPK or mTOR to mimic energy stress in bovine granulosa cells limits the inflammatory responses to lipopolysaccharide. We inhibited glycolysis, activated AMPK or inhibited mTOR in granulosa cells isolated from 4-8mm and from > 8.5 mm diameter ovarian follicles, and then challenged the cells with lipopolysaccharide and measured the production of interleukins IL-1α, IL-1ß, and IL-8. We found that inhibiting glycolysis with 2-deoxy-d-glucose reduced lipopolysaccharide-stimulated IL-1α > 80%, IL-1ß > 90%, and IL-8 > 65% in granulosa cells from 4-8 mm and from > 8.5 mm diameter ovarian follicles. Activating AMPK with AICAR also reduced lipopolysaccharide-stimulated IL-1α > 60%, IL-1ß > 75%, and IL-8 > 20%, and shortened the duration of lipopolysaccharide-stimulated phosphorylation of the mitogen-activated protein kinase ERK1/2 and JNK. However, only the mTOR inhibitor Torin 1, and not rapamycin, reduced lipopolysaccharide-stimulated IL-1α and IL-1ß. In conclusion, manipulating granulosa cell energy metabolism with a glycolysis inhibitor, an AMPK activator, or an mTOR inhibitor, limited inflammatory responses to lipopolysaccharide. Our findings imply that energy stress compromises ovarian follicle immune defences.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Energy Metabolism , Granulosa Cells/metabolism , Inflammation/prevention & control , Lipopolysaccharides/toxicity , Ovarian Follicle/metabolism , TOR Serine-Threonine Kinases/antagonists & inhibitors , AMP-Activated Protein Kinases/genetics , Animals , Cattle , Female , Glycolysis , Granulosa Cells/drug effects , Granulosa Cells/immunology , Immunity, Innate , Inflammation/chemically induced , Inflammation/immunology , Inflammation/metabolism , MAP Kinase Signaling System , Ovarian Follicle/drug effects , Ovarian Follicle/immunology
16.
FASEB Bioadv ; 2(8): 506-520, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32821881

ABSTRACT

Postpartum uterine infection reduces fertility in dairy cattle; however, the mechanisms of uterine infection-mediated infertility are unknown. Paradoxically, infection-induced infertility persists after the resolution of disease. Oocytes are a finite resource, which are present at various stages of development during uterine infection. It is likely that oocyte development is influenced by uterine infection-induced changes to the follicular microenvironment. To better understand the impact of infection on oocyte quality we employed global transcriptomics of oocytes collected from heifers after receiving intrauterine infusion of pathogenic Escherichia coli and Trueperella pyogenes. We hypothesized that the oocyte transcriptome would be altered in response to intrauterine infection. A total of 452 differentially expressed genes were identified in oocytes collected from heifers 4 days after bacteria infusion compared to vehicle infusion, while 539 differentially expressed genes were identified in oocytes collected from heifers 60 days after bacteria infusion. Only 42 genes were differentially expressed in bacteria-infused heifers at both Day 4 and Day 60. Interferon, HMGB1, ILK, IL-6, and TGF-beta signaling pathways were downregulated in oocytes collected at Day 4 from bacteria-infused heifers, while interferon, ILK, and IL-6 signaling were upregulated in oocytes collected at Day 60 from bacteria-infused heifers. These data suggest that bacterial infusion alters the oocyte transcriptome differently at Day 4 and Day 60, suggesting different follicle stages are susceptible to damage. Characterizing the long-term impacts of uterine infection on the oocyte transcriptome aids in our understanding of how infection causes infertility in dairy cattle.

18.
Biol Reprod ; 103(3): 508-520, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32401311

ABSTRACT

Uterine infection is associated with infertility in women and dairy cows, even after the resolution of infection. However, the mechanisms causing this persistent infertility are unclear. Here, we hypothesized that induced endometritis in non-lactating dairy cows would reduce the developmental competence of oocytes. Non-lactating Holstein cows received an intrauterine infusion of endometrial pathogenic bacteria (Escherichia coli and Trueperella pyogenes; n = 12) or vehicle control (n = 11) on day 2 of the estrous cycle. Bacterial infusion increased expression of endometrial inflammatory mediators, and a mucopurulent discharge in the vagina confirmed the establishment of endometritis. Oocytes were collected by transvaginal ultrasound-guided ovum pickup on days 2, 24, 45, and 66 following infusion and subjected to in vitro fertilization and embryo culture. Bacterial infusion resulted in fewer cleaved oocytes developing to morulae compared to vehicle-infused controls (30.7 versus 45.0%), with the greatest effect observed in oocytes collected on day 24. Development to morula was inversely correlated with endometrial expression of IL6 on day 6. The expression of genes associated with embryo quality did not differ significantly between morulae from bacteria-infused and control cows. Artificial insemination 130 days after intrauterine infusion resulted in normal, filamentous embryos that produced interferon tau 16 days after conception in both infusion groups. This model of experimentally induced uterine infection successfully resulted in endometritis and a reduction in the proportion of oocytes that developed to morulae following in vitro fertilization. In conclusion, endometritis reduced the capacity of oocytes to develop to morulae.


Subject(s)
Cattle Diseases/pathology , Endometritis/pathology , Endometritis/veterinary , Oocytes/growth & development , Oocytes/pathology , Uterine Diseases/pathology , Uterine Diseases/veterinary , Actinomycetales Infections/pathology , Animals , Cattle , Cattle Diseases/microbiology , Embryo Culture Techniques , Endometritis/microbiology , Escherichia coli Infections/pathology , Estrous Cycle , Female , Fertilization in Vitro , Inflammation Mediators/metabolism , Insemination, Artificial , Interferon Type I/metabolism , Pregnancy , Pregnancy Proteins/metabolism , Uterine Diseases/microbiology , Vagina/metabolism , Vagina/pathology
19.
Reproduction ; 160(1): 93-107, 2020 07.
Article in English | MEDLINE | ID: mdl-32422601

ABSTRACT

Infection of the postpartum uterus with pathogenic bacteria is associated with infertility months later in dairy cattle. However, it is unclear whether these bacterial infections lead to long-term changes in the reproductive tract that might help explain this infertility. Here we tested the hypothesis that infusion of pathogenic bacteria into the uterus leads to changes in the transcriptome of the reproductive tract 3 months later. We used virgin Holstein heifers to avoid potential confounding effects of periparturient problems, lactation, and negative energy balance. Animals were infused intrauterine with endometrial pathogenic bacteria Escherichia coli and Trueperella pyogenes (n = 4) and compared with control animals (n = 6). Three months after infusion, caruncular and intercaruncular endometrium, isthmus and ampulla of the oviduct, and granulosa cells from ovarian follicles >8 mm diameter were profiled by RNA sequencing. Bacterial infusion altered the transcriptome of all the tissues when compared with control. Most differentially expressed genes were tissue specific, with 109 differentially expressed genes unique to caruncular endometrium, 57 in intercaruncular endometrium, 65 in isthmus, 298 in ampulla, and 83 in granulosa cells. Surprisingly, despite infusing bacteria into the uterus, granulosa cells had more predicted upstream regulators of differentially expressed genes than all the other tissues combined. In conclusion, there were changes in the transcriptome of the endometrium, oviduct and even granulosa cells, 3 months after intrauterine infusion of pathogenic bacteria. These findings imply that long-term changes throughout the reproductive tract could contribute to infertility after bacterial infections of the uterus.


Subject(s)
Cattle Diseases/pathology , Endometrium/pathology , Escherichia coli Infections/complications , Reproduction , Transcriptome , Uterus/pathology , Animals , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/genetics , Cattle Diseases/microbiology , Endometrium/metabolism , Endometrium/microbiology , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Female , Uterus/metabolism , Uterus/microbiology
20.
J Dairy Sci ; 103(1): 805-822, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31668442

ABSTRACT

Objectives were to determine the effects of feeding supplemental 25-hydroxyvitamin D3 [25(OH)D3] on concentrations of vitamin D metabolites and minerals in serum, mammary immune status, and responses to intramammary bacterial infection in dairy cows. Sixty multiparous, pregnant lactating Holstein cows with somatic cell count <200,000/mL were blocked by days in milk and milk yield and randomly assigned to receive a daily top-dressed dietary supplement containing 1 or 3 mg of vitamin D3 (1mgD or 3mgD), or 1 or 3 mg 25(OH)D3 (1mg25D or 3mg25D) for 28 d (n = 15/treatment). Cows were kept in a freestall barn and fed a total mixed ration in individual feeding gates. Individual dry matter intake (DMI) and milk yield were recorded daily, and milk and blood samples were collected at 0, 7, 14, and 21 d relative to the start of treatment. At 21 d, cows fed 1mgD and 3mg25D received an intramammary challenge with Streptococcus uberis. Cows were observed for severity of mastitis, and blood and milk samples were collected every 12 h to measure inflammation. The 1mg25D and 3mg25D cows had greater serum 25(OH)D3 concentrations at 21 d compared with 1mgD and 3mgD cows (62 ± 7, 66 ± 8, 135 ± 15, and 232 ± 26 ng/mL for 1mgD, 3mgD, 1mg25D, and 3mg25D, respectively). The 3mg25D cows had greater concentrations of Ca and P in serum at 21 d compared with other treatments (Ca = 2.38, 2.4, 2.37, and 2.48 ± 0.02 mM, 1.87, 1.88, and 2.10 ± 0.08 mM for 1mgD, 3mgD, 1mg25D, and 3mg25D, respectively). Yields of milk and milk components, DMI, body weight, and concentrations of 1,25-dihydroxyvitamin D and Mg in serum did not differ among treatments. Abundance of mRNA transcripts for interleukin-1ß (IL1B) and inducible nitric oxide synthase (iNOS) in milk somatic cells before S. uberis challenge were increased in cows fed 25(OH)D3 compared with cows fed vitamin D3. Furthermore, IL1B, iNOS, ß-defensin 7, and ß-defensin 10 in milk somatic cells increased as concentrations of 25(OH)D3 increased in serum. Cows fed 3mg25D had less severe mastitis at 60 and 72 h after challenge with S. uberis compared with cows fed 1mgD. Concentrations of bacteria, somatic cells, and serum albumin in milk after challenge did not differ between treatments; however, an interaction between treatment and day was detected for lactate dehydrogenase in milk. Expression of adhesion protein CD11b on milk neutrophils after the S. uberis challenge was greater among 3mg25D cows compared with 1mgD cows. Transcripts of CYP24A1 and iNOS in milk somatic cells during mastitis also were greater in 3mg25D cows compared with 1mgD cows. Feeding 25(OH)D3 increased serum 25(OH)D3 more effectively than supplemental vitamin D3, resulting in increased serum mineral concentrations, increased expression of vitamin D-responsive genes, and altered immune responses to intramammary bacterial challenge.


Subject(s)
Calcifediol/administration & dosage , Dietary Supplements , Lactation/drug effects , Minerals/blood , Animals , Calcifediol/pharmacology , Cattle , Diet/veterinary , Female , Milk/metabolism , Pregnancy , Vitamin D/analogs & derivatives , Vitamin D/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...