Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 14: 68-78, 2023.
Article in English | MEDLINE | ID: mdl-36761680

ABSTRACT

Industrial applications of nanomaterials require large-scale production methods, such as liquid phase exfoliation (LPE). Regarding this, it is imperative to characterize the obtained materials to tailor parameters such as exfoliation medium, duration, and mechanical energy source to the desired applications. This work presents results of statistical analyses of talc flakes obtained by LPE in four different media. Talc is a phyllosilicate that can be exfoliated into nanoflakes with great mechanical properties. Sodium cholate at two different concentrations (below and at the critical micelar concentration), butanone, and Triton-X100 were employed as exfoliation medium for talc. Using recent published statistical analysis methods based on atomic force microscopy images of thousands of flakes, the shape and size distribution of nanotalc obtained using the four different media are compared. This comparison highlights the strengths and weaknesses of the media tested and hopefully will facilitate the choice of the medium for applications that have specific requirements.

2.
Nanotechnology ; 31(11): 115704, 2020 Mar 13.
Article in English | MEDLINE | ID: mdl-31791016

ABSTRACT

Gypsum is an Earth-abundant mineral with enormous applications in agriculture and civil engineering. Here, we show it is also an excellent height calibration standard alternative for atomic force microscopy (AFM). Using plain water as etchant, gypsum flakes readily review 0.75 nm tall terraces which are easy to image (lateral dimensions from tens to hundreds of nanometers) and robust against time in ambient conditions. Therefore, the present work demonstrates a new height standard alternative which is easily-available for all AFM microscopists around the world.

3.
Nanotechnology ; 30(44): 445705, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31365906

ABSTRACT

We report on an experimental investigation of serpentine, an abundant phyllosilicate, as an alternative source of two-dimensional (2D) nanomaterials. We show, through scanning probe microscopy (SPM) measurements, that natural serpentine mineral can be mechanically exfoliated down to few-layer flakes, where monolayers can be easily resolved. The parent serpentine bulk material was initially characterized via conventional techniques like XRD, XPS, FTIR and Raman spectroscopies and the results show that it is predominantly constituted by the antigorite mineral. From ab initio calculations using density functional theory, we also determine the geometry and electronic structure of antigorite, the observed structural form of serpentine. Additionally, we further characterized electrical and mechanical properties of the obtained 2D material flakes using SPM and broadband synchrotron infrared nanospectroscopy. Wavelength tuning of the serpentine vibrational resonances, assigned to in- and out-of-plane molecular vibrations, are observed and compared with the FTIR characterization of the parent bulk material. They show that there is no degradation of serpentine's structural properties during its mechanical exfoliation down to nanometer-thin sheets. Therefore, our results introduce the serpentine mineral as an attractive low-cost candidate in 2D materials applications.

4.
Soft Matter ; 11(41): 8113-25, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26335751

ABSTRACT

Cationic polymers have recently attracted attention due to their proven potential for nonviral gene delivery. In this study, we report novel biocompatible nanocomplexes produced using chemically functionalized N,N,N-trimethyl chitosan (TMC) with different N-acyl chain lengths (C5-C18) associated with single-stranded oligonucleotides. The TMC derivatives were synthesized by covalent coupling reactions of quaternized chitosan with n-pentanoic (C5), n-decanoic (C10), and n-octadecanoic (C18) fatty acids, which were extensively characterized by Fourier transform-infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance ((1)H NMR). These N-acylated TMC derivatives (TMCn) were used as cationic polymeric matrices for encapsulating anionic 18-base single-stranded thiophosphorylated oligonucleotides (ssONs), leading to the formation of polyplexes further characterized by zeta potential (ZP), dynamic light scattering (DLS), binding affinity, transfection efficiency and in vitro cytotoxicity assays. The results demonstrated that the length of the grafted hydrophobic N-acyl chain and the relative amino:phosphate groups ratio (N/P ratio) between the TMC derivatives and ssON played crucial roles in determining the physicochemical properties of the obtained nanocomplexes. While none of the tested derivatives showed appreciable cytotoxicity, the type of acyl chain had a remarkable influence on the cell transfection capacity of TMC-ssON nanocomplexes with the derivatives based on stearic acid showing the best performance based on the results of in vitro assays using a model cell line expressing luciferase (HeLa/Luc705).


Subject(s)
Chitosan/chemistry , Nanoparticles/chemistry , Oligonucleotides/chemistry , Cell Survival/drug effects , Chitosan/metabolism , Chitosan/toxicity , Dynamic Light Scattering , Fatty Acids/chemistry , HeLa Cells , Humans , Magnetic Resonance Spectroscopy , Nanoparticles/toxicity , Oligonucleotides/metabolism , Spectroscopy, Fourier Transform Infrared , Transfection
5.
Molecules ; 18(6): 6550-72, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23736790

ABSTRACT

Carbohydrates and derivatives (such as glycolipids, glycoproteins) are of critical importance for cell structure, metabolism and functions. The effects of carbohydrate and lipid metabolic imbalances most often cause health disorders and diseases. In this study, new carbohydrate-based nanobioconjugates were designed and synthesized at room temperature using a single-step aqueous route combining chitosan and acyl-modified chitosan with fluorescent inorganic nanoparticles. N-palmitoyl chitosan (C-Pal) was prepared aiming at altering the lipophilic behavior of chitosan (CHI), but also retaining its reasonable water solubility for potential biomedical applications. CHI and C-Pal were used for producing biofunctionalized CdS quantum dots (QDs) as colloidal water dispersions. Fourier transform infrared spectroscopy (FTIR), thermal analysis (TG/DSC), surface contact angle (SCA), and degree of swelling (DS) in phosphate buffer were used to characterize the carbohydrates. Additionally, UV-Visible spectroscopy (UV-Vis), photoluminescence spectroscopy (PL), dynamic light scattering (DLS), scanning and transmission electron microscopy (SEM/TEM) were used to evaluate the precursors and nanobioconjugates produced. The FTIR spectra associated with the thermal analysis results have undoubtedly indicated the presence of N-palmitoyl groups "grafted" to the chitosan chain (C-Pal) which significantly altered its behavior towards water swelling and surface contact angle as compared to the unmodified chitosan. Furthermore, the results have evidenced that both CHI and C-Pal performed as capping ligands on nucleating and stabilizing colloidal CdS QDs with estimated average size below 3.5 nm and fluorescent activity in the visible range of the spectra. Therefore, an innovative "one-step" process was developed via room temperature aqueous colloidal chemistry for producing biofunctionalized quantum dots using water soluble carbohydrates tailored with amphiphilic behavior offering potential applications as fluorescent biomarkers in the investigation of glycoconjugates for the nutrition, biology, pharmaceutical, and medicine fields.


Subject(s)
Chitosan/analogs & derivatives , Chitosan/chemistry , Quantum Dots/chemistry , Biopolymers/chemistry , Carbohydrates/chemistry , Chitosan/chemical synthesis , Molecular Structure , Particle Size , Quantum Dots/ultrastructure , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...