Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int Immunopharmacol ; 64: 280-288, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30219503

ABSTRACT

The aim of the present study was to assess if the uninterrupted and prolonged administration of nanoparticles containing diethylcarbamazine (NANO-DEC) would cause liver, kidney and heart toxicity and then analyze for the first time its action in model of liver fibrosis. Thus, NANO-DEC was administered in C57BL/6 mice daily for 48 days, and at the end the blood was collected for biochemical analyzes. In the long-term administration assay, the evaluation of serological parameters (CK-MB, creatinine, ALT, AST and urea) allowed the conclusion that NANO-DEC prolonged administration did not cause hepatic, renal and cardiac damage. For fibrosis assays, C57BL/6 mice were divided into six groups: 1) control (Cont); 2) carbon tetrachloride (CCl4); 3) CCl4 + DEC 25 mg/kg; 4) CCl4 + DEC 50 mg/kg; 5) CCl4 + NANO-DEC 5 mg/kg and 6) CCl4 + NANO-DEC 12.5 mg/kg. Carbon tetrachloride induced hepatic fibrosis observed through increased inflammatory (TNF-α, IL-1ß, COX-2, NO and iNOS) and fibrotic markers (TGF-ß and TIMP-1), changes in the hepatic morphology, high presence of collagen fibers and elevated serum levels of AST, ALT and ALP. Treatment with NANO-DEC exhibited a superior anti-inflammatory and anti-fibrotic effects compared to the DEC traditional formulation, restoring liver morphology, reducing the content of collagen fibers and serological parameters, besides decreasing the expression of inflammatory and fibrotic markers. The present formulation of nanoencapsulated DEC is a well tolerated anti-inflammatory and anti-fibrotic drug and therefore could be a potential therapeutic tool for the treatment of chronic liver disorders.


Subject(s)
Diethylcarbamazine/administration & dosage , Liver Cirrhosis, Experimental/drug therapy , Animals , Anti-Inflammatory Agents/pharmacology , Carbon Tetrachloride , Collagen/analysis , Creatinine/blood , Cyclooxygenase 2/analysis , Diethylcarbamazine/pharmacology , Diethylcarbamazine/therapeutic use , Drug Compounding , Liver/pathology , Liver Cirrhosis, Experimental/pathology , Male , Mice , Mice, Inbred C57BL , Nanoparticles , Nitric Oxide/biosynthesis
2.
Int Immunopharmacol ; 57: 91-101, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29475100

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are responsible for high mortality rates in critical patients. Despite >50 years of intensive research, there is no pharmacologically effective treatment to treat ALI. PPARs agonists, chemically named thiazolidinediones (TZDs) have emerged as potential drugs for the treatment of ALI and ARDS due to their anti-inflammatory efficacy. The present study aims to evaluate the potential anti-inflammatory effects of new TZDs derivatives, LPSF/GQ-2 and LPSF/RA-4, on ALI induced by LPS. BALB/c mice were divided into five groups: 1) Control; 2) LPS intranasal 25 µg; 3) LPSF/GQ-2 30 mg/kg + LPS; 4) LPSF/RA-4 20 mg/kg + LPS; and 5) DEXA 1 mg/Kg + LPS. BALF analyses revealed that LPSF/GQ-2 and LPSF/RA-4 reduced NO levels in BALF and inflammatory cell infiltration induced by LPS. MPO levels were also reduced by the LPSF/GQ-2 and LPSF/RA-4 pre-treatments. In contrast, histopathological analyses showed better tissue protection with LPSF/GQ-2 than DEXA and LPSF/RA-4 groups. Similarly, LPSF/GQ-2 reduced inflammatory markers (IL-1, iNOS, TNFα, IL-1ß, IL-6) better than LPSF/RA-4. The LPSF/GQ-2 anti-inflammatory action could be attributed to the inhibition of NFκB, ERK, p38, and PARP pathways. In contrast, LPSF/RA-4 had no effect on the expression of p38, JNK, NFκB. The present study indicates that LPSF/GQ-2 presents a potential therapeutic role as an anti-inflammatory drug for ALI.


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/therapeutic use , NF-kappa B/metabolism , Pneumonia/drug therapy , Respiratory Distress Syndrome/drug therapy , Thiazolidinediones/therapeutic use , Animals , Cytokines/metabolism , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Inflammation Mediators/metabolism , Lipopolysaccharides/immunology , Male , Mice , Peroxisome Proliferator-Activated Receptors/agonists , Signal Transduction
3.
Inflamm Res ; 67(1): 43-55, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29151155

ABSTRACT

OBJECTIVE: Chronic inflammation has been recognized as having a prominent role pathogenesis of benign prostatic hyperplasia (BPH) and cancer. It is believed that chronic inflammation induces prostatic fibromuscular growth. This correlation has been clearly illustrated by both in vivo and in vitro studies; however, current experimental models of BPH require complex surgery or hormonal treatment. Therefore, the aim of the present study was to propose a new murine model of BPH/prostatitis induced by intraurethral injection of LPS. METHODS: Male Swiss and C57Bl/6 mice were then sacrificed 3, 7, 10, and 14 days after intraurethral injection of LPS. The prostates were quickly dissected and fixed for morphological and immunohistochemical analyses. RESULTS: The results showed that LPS played an important role in the cell proliferation of the prostate. Histological and ultrastructural analysis showed epithelial hyperplasia, clear stromal cells, little inflammatory infiltration, and heavy bleeding. Treatment with LPS also promoted the increase of growth factor (FGF-7 and TGF-ß), α-actin, and proinflammatory cytokines (IL-1, IL-6, IL-17), both in the stroma and epithelium. CONCLUSION: According to the present findings, it can be concluded that the intraurethral administration of LPS promotes tissue remodeling, as well as stimulating the pattern of pro-inflammatory cytokines, and therefore, constitutes an effective experimental model of BPH/inflammation.


Subject(s)
Inflammation/chemically induced , Lipopolysaccharides/toxicity , Prostate/drug effects , Prostatic Hyperplasia/chemically induced , Animals , Cytokines/immunology , Disease Models, Animal , Fibroblast Growth Factor 7/immunology , Inflammation/immunology , Inflammation/pathology , Injections , Male , Mice, Inbred C57BL , Prostate/immunology , Prostate/pathology , Prostatic Hyperplasia/immunology , Prostatic Hyperplasia/pathology , Urethra
4.
Int Immunopharmacol ; 50: 330-337, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28743082

ABSTRACT

Previous studies from our laboratory have demonstrated that Diethylcarbamazine (DEC) is a potent anti-inflammatory drug. The aim of the present study was to characterize the nanoencapsulation of DEC and to evaluate its effectiveness in a model of inflammation for the first time. C57BL/6 mice were divided into six groups: 1) Control; 2) Carbon tetrachloride (CCl4); 3) DEC 25mg/kg+CCl4; 4) DEC 50mg/kg+CCl4; 5) DEC-NANO 05mg/kg+CCl4 and 6) DEC-NANO 12.5mg/kg+CCl4. Liver fragments were stained with hematoxylin-eosin, and processed for Western blot, ELISA and immunohistochemistry. Serum was also collected for biochemical measurements. Carbon tetrachloride induced hepatic injury, observed through increased inflammatory markers (TNF-α, IL-1ß, PGE2, COX-2 and iNOS), changes in liver morphology, and increased serum levels of total cholesterol, triglycerides, TGO and TGP, LDL, as well as reduced HDL levels. Nanoparticles containing DEC were characterized by diameter, polydispersity index and zeta potential. Treatment with 12.5 nanoencapsulated DEC exhibited a superior anti-inflammatory action to the DEC traditional dose (50mg/kg) used in murine assays, restoring liver morphology, improving serological parameters and reducing the expression of inflammatory markers. The present formulation of nanoencapsulated DEC is therefore a potential therapeutic tool for the treatment of inflammatory hepatic disorders, permitting the use of smaller doses and reducing treatment time, while maintaining high efficacy.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Capsules/administration & dosage , Diethylcarbamazine/therapeutic use , Hepatitis/drug therapy , Nanostructures/administration & dosage , Acute Disease , Animals , Cytokines/metabolism , Disease Models, Animal , Drug Delivery Systems , Humans , Inflammation Mediators/metabolism , Lipid Metabolism , Mice , Mice, Inbred C57BL
5.
Pharmacol Rep ; 69(1): 81-89, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27914293

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is characterized by extensive neutrophil infiltration, and apoptosis delay considered part of the pathogenesis of the condition. Despite great advances in treatment strategies, few effective therapies are known for ALI. Diethylcarbamazine (DEC) is used against lymphatic filariasis, a number of studies have described its anti-inflammatory activities and pro-apoptotic effect. These properties have been associated with nuclear factor kappa-B inactivation. The aim of the present study was to investigate the effect of DEC on ALI induced by lipopolysaccharide (LPS) in mice. METHODS: DEC effect was evaluated by histological and ultrastructural analysis, immunohistochemistry and western blot (WB). Also TUNEL assays were performed and as well as myeloperoxidase (MPO) levels and nitric oxide (NO) were measured. RESULTS: The results demonstrate that LPS induced histological and ultrastructural changes with tissue damage, intense cell infiltration and pulmonary edema, and also increased levels of MPO and NO. DEC reversed these effects, confirming its anti-inflammatory action. DEC pro-apoptotic activity was also evaluated. The expression of TUNEL-positive cells and caspase-3 was increased in DEC treated group. Furthermore, immunohistochemical and WB analysis showed that DEC increased the expression of pro-apoptotic proteins in both the intrinsic (Bax, cytochrome c and caspase-9) and the extrinsic pathways of apoptosis (Fas, FADD and caspase-8). Additionally, DEC reduced the expression of the anti-apoptotic protein Bcl-2. CONCLUSION: Our results suggest that DEC attenuates ALI through the prevention of inflammatory cells accumulation by stimulating apoptosis. DEC accelerates the resolution of inflammation and may be a potential pharmacological treatment for ALI.


Subject(s)
Acute Lung Injury/prevention & control , Apoptosis/drug effects , Diethylcarbamazine/therapeutic use , Inflammation Mediators/antagonists & inhibitors , Lipopolysaccharides/toxicity , Acute Lung Injury/chemically induced , Acute Lung Injury/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Apoptosis/physiology , Diethylcarbamazine/pharmacology , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/prevention & control , Inflammation Mediators/metabolism , Male , Mice , Mice, Inbred C57BL
6.
PLoS One ; 10(4): e0123787, 2015.
Article in English | MEDLINE | ID: mdl-25875942

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) defines a wide spectrum of liver diseases that extends from simple steatosis to non-alcoholic steatohepatitis. Although the pathogenesis of NAFLD remains undefined, it is recognized that insulin resistance is present in almost all patients who develop this disease. Thiazolidinediones (TZDs) act as an insulin sensitizer and have been used in the treatment of patients with type 2 diabetes and other insulin-resistant conditions, including NAFLD. Hence, therapy of NAFLD with insulin-sensitizing drugs should ideally improve the key hepatic histological changes, while also reducing cardiometabolic and cancer risks. Controversially, TZDs are associated with the development of cardiovascular events and liver problems. Therefore, there is a need for the development of new therapeutic strategies to improve liver function in patients with chronic liver diseases. The aim of the present study was to assess the therapeutic effects of LPSF/GQ-02 on the liver of LDLR-/- mice after a high-fat diet. Eighty male mice were divided into 4 groups and two different experiments: 1-received a standard diet; 2-fed with a high-fat diet (HFD); 3-HFD+pioglitazone; 4-HFD+LPSF/GQ-02. The experiments were conducted for 10 or 12 weeks and in the last two or four weeks respectively, the drugs were administered daily by gavage. The results obtained with an NAFLD murine model indicated that LPSF/GQ-02 was effective in improving the hepatic architecture, decreasing fat accumulation, reducing the amount of collagen, decreasing inflammation by reducing IL-6, iNOS, COX-2 and F4 / 80, and increasing the protein expression of IκBα, cytoplasmic NFκB-65, eNOS and IRS-1 in mice LDLR -/-. These results suggest a direct action by LPSF/GQ-02 on the factors that affect inflammation, insulin resistance and fat accumulation in the liver of these animals. Further studies are being conducted in our laboratory to investigate the possible mechanism of action of LPSF/GQ-02 on hepatic lipid metabolism.


Subject(s)
Non-alcoholic Fatty Liver Disease/drug therapy , Thiazolidinediones/therapeutic use , Animals , Cyclooxygenase 2/metabolism , Diet, High-Fat , Disease Models, Animal , Epidermal Growth Factor/metabolism , I-kappa B Proteins/metabolism , Inflammation , Interleukin-6/metabolism , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-KappaB Inhibitor alpha , Nitric Oxide Synthase Type II/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Pioglitazone , Receptors, LDL/deficiency , Receptors, LDL/genetics , Triglycerides/analysis , Triglycerides/blood
7.
Clin Exp Pharmacol Physiol ; 42(4): 369-79, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25676413

ABSTRACT

Alcoholic liver disease is a major cause of chronic liver disease worldwide. Diethylcarbamazine (DEC) is a drug that has anti-inflammatory properties due to its effects on the metabolism of arachidonic acid. The present study examined the anti-inflammatory effects of DEC on the mechanisms of alcoholic liver disease. C57BL/6 mice were divided into seven groups: (i) control; (ii) DEC 50 mg/kg; (iii) alcohol; (iv) alcohol + DEC 50 mg/kg; (v) alcohol + celecoxib 50 mg/kg; (vi) alcohol + pyrrolidine dithiocarbamate 100 mg/kg; and (vii) alcohol + pyrrolidine dithiocarbamate 100 mg/kg + DEC 50 mg/kg. Liver fragments were stained with haemotoxylin-eosin and Sirius red, and processed for immunofluorescence, western blot, and immunohistochemistry. Serum was also collected for biochemical measurements. Alcohol induced liver damage, elevated collagen content, and increased expression of nuclear factor kappa-light-chain-enhancer of activated B cells and inflammatory markers (tumour necrosis factor-α, interferon-γ, interleukin-1ß, inducible nitric oxide synthase, cyclooxygenases-2, and transforming growth factor-ß). Treatment with DEC was able to reduce liver damage, collagen content, the expression of nuclear factor kappa-light-chain-enhancer of activated B cells and inflammatory markers; it also ameliorated biochemistry parameters (total cholesterol, high-density lipoprotein cholesterol, triglyceride content and aspartate aminotransferase) and increased the expression of anti-inflammatory markers (p-5' adenosine monophosphate-activated protein kinase and interleukin-10). Future clinical trials may demonstrate that oral administration of DEC may be suitable for the treatment of alcoholic liver disease and other liver diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Diethylcarbamazine/pharmacology , Liver Cirrhosis, Alcoholic/drug therapy , Liver/drug effects , NF-kappa B/antagonists & inhibitors , AMP-Activated Protein Kinases/metabolism , Animals , Aspartate Aminotransferases/blood , Collagen/metabolism , Cyclooxygenase 2/genetics , Cytokines/metabolism , Cytoprotection , Inflammation Mediators/metabolism , Lipids/blood , Liver/metabolism , Liver/pathology , Liver Cirrhosis, Alcoholic/metabolism , Liver Cirrhosis, Alcoholic/pathology , Male , Mice, Inbred C57BL , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Signal Transduction/drug effects , Transforming Growth Factor beta/metabolism
8.
Int Immunopharmacol ; 23(1): 153-62, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25175917

ABSTRACT

Diethylcarbamazine citrate (DEC) is widely used to treat lymphatic filariasis and Tropical Pulmonary Eosinophilia. A number of studies have reported a possible role in the host immune system, but exactly how DEC exerts this effect is still unknown. The present study reports the effects of DEC pretreatment on NF-κB regulation using the pleurisy model induced by carrageenan. Swiss male mice (Mus musculus) were divided into four experimental groups: control (SAL); carrageenan (CAR); diethylcarbamazine (DEC) and curcumin (CUR). The animals were pretreated with DEC (50mg/kg, v.o), CUR (50mg/kg, i.p) or distilled water for three consecutive days before pleurisy. One way analysis of variance (ANOVA) was performed by Tukey post-hoc test, and values were considered statistically significant when p<0.05. DEC pretreatment reduced tissue damage and the production of inflammatory markers, such as NO, iNOS, PGE2, COX-2, and PARP induced by carrageenan. Similarly, a known inhibitor of NF-κB pathway (curcumin) was also able to reduce these parameters. Like curcumin, DEC prevents NF-κB activation by reducing NF-κB p65 phosphorylation and IκBα degradation. DEC prevented NF-κB activation via p38 MAPK, but did not interfere in the ERK pathway in this experimental model. However, further studies should be developed to confirm this hypothesis. These findings suggest that DEC could be a promising drug for inflammatory disorders, especially in pulmonary diseases such as Acute Lung Inflammation, due its high anti-inflammatory potential which prevents NF-κB activation.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Diethylcarbamazine/administration & dosage , Elephantiasis, Filarial/drug therapy , NF-kappa B/metabolism , Pleurisy/drug therapy , Pulmonary Eosinophilia/drug therapy , Animals , Carrageenan/toxicity , Curcumin/administration & dosage , Disease Models, Animal , Humans , Inflammation Mediators/metabolism , Male , Mice , Pleurisy/chemically induced , Signal Transduction/drug effects , Transcriptional Activation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...