Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurodev Disord ; 11(1): 34, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31839002

ABSTRACT

BACKGROUND: Intrauterine growth restriction (IUGR) is a common complication of pregnancy and is associated with significant neurological deficits in infants, including white matter damage. Previous work using an animal model of IUGR has demonstrated that IUGR rats exhibit neurobehavioral deficits and developmental delays in oligodendrocyte maturation and myelination, but the mechanisms which cause this delay are unknown. Inflammation may be an important etiological factor in IUGR and has been recognized as playing a fundamental role in the pathogenesis of myelin disorders, including cerebral palsy. METHODS: To create the model, the uterine arteries of pregnant rats were ligated at embryonic day 15. Rats delivered spontaneously. Cytokine and chemokine expression was evaluated at one prenatal and three postnatal time points, and myelin protein expression and oligodendrocyte cell numbers were evaluated by several methods at postnatal day 14. IL-4 was identified as a potential inhibitor of myelination, and rat pups were injected with IL-4 function blocking antibody from postnatal days 1-5 and myelination was assessed. RESULTS: Here, we show a novel mechanism of white matter injury. IUGR induces an exaggerated Th2 response in the developing rat brain, including upregulation of several Th2 cytokines. Of these, IL-4 is significantly increased during the period corresponding to robust developmental myelination. We show that neutralizing IL-4 antibody therapy given in the newborn period ameliorates inflammation and restores myelin protein expression and oligodendrocyte cell number in the IUGR brain to control levels, demonstrating a novel role for Th2 responses and IL-4 in IUGR and white matter injury. In addition, IL-4 directly affects oligodendrocytes in vitro decreasing differentiation. CONCLUSIONS: In this study, we have identified inflammation as a factor in the decrease in myelin seen in an animal model of IUGR. IL-4, an inflammatory protein often thought to be protective in the adult, is specifically increased, and treatment of these animals to prevent this increase ameliorates white matter damage. Our results suggest that the immune system plays a role in IUGR that is different in the perinatal period than in the adult and preventing this exaggerated Th2 response may be a potential therapeutic target.


Subject(s)
Brain/immunology , Encephalitis/immunology , Fetal Growth Retardation/immunology , Interleukin-4/immunology , Myelin Sheath/immunology , Th2 Cells/immunology , Animals , Disease Models, Animal , Encephalitis/complications , Female , Macrophages/immunology , Male , Microglia/immunology , Rats, Sprague-Dawley , White Matter/immunology
2.
Endocrinology ; 159(2): 1035-1049, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29309562

ABSTRACT

Intrauterine growth restriction (IUGR) increases the risk of type 2 diabetes developing in adulthood. In previous studies that used bilateral uterine artery ligation in a rat model of IUGR, age-associated decline in glucose homeostasis and islet function was revealed. To elucidate mechanisms contributing to IUGR pathogenesis, the islet transcriptome was sequenced from 2-week-old rats, when in vivo glucose tolerance is mildly impaired, and at 10 weeks of age, when rats are hyperglycemic and have reduced ß-cell mass. RNA sequencing and functional annotation with Ingenuity Pathway Analysis revealed temporal changes in IUGR islets. For instance, gene expression involving amino acid metabolism was significantly reduced primarily at 2 weeks of age, but ion channel expression, specifically that involved in cell-volume regulation, was more disrupted in adult IUGR islets. Additionally, we observed alterations in the microenvironment of IUGR islets with extracellular matrix genes being significantly increased at 2 weeks of age and significantly decreased at 10 weeks. Specifically, hyaluronan synthase 2 expression and hyaluronan staining were increased in IUGR islets at 2 weeks of age (P < 0.05). Mesenchymal stromal cell-derived factors that have been shown to preserve islet allograft function, such as Anxa1, Cxcl12, and others, also were increased at 2 weeks and decreased in adult islets. Finally, comparisons of differentially expressed genes with those of type 2 diabetic human islets support a role for these pathways in human patients with diabetes. Together, these data point to new mechanisms in the pathogenesis of IUGR-mediated islet dysfunction in type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/etiology , Fetal Growth Retardation/genetics , Fetal Growth Retardation/metabolism , Islets of Langerhans/physiopathology , Pancreatic Diseases/etiology , Transcriptome , Animals , Cells, Cultured , Female , Fetal Growth Retardation/physiopathology , Gene Expression Profiling , Humans , Pancreatic Diseases/genetics , Pancreatic Diseases/physiopathology , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Rats , Rats, Sprague-Dawley , Risk Factors
3.
Diabetes ; 63(5): 1672-84, 2014 May.
Article in English | MEDLINE | ID: mdl-24408314

ABSTRACT

Intrauterine growth restriction (IUGR) leads to development of type 2 diabetes (T2D) in adulthood. The mechanisms underlying this phenomenon have not been fully elucidated. Inflammation is associated with T2D; however, it is unknown whether inflammation is causal or secondary to the altered metabolic state. Here we show that the mechanism by which IUGR leads to the development of T2D in adulthood is via transient recruitment of T-helper 2 (Th) lymphocytes and macrophages in fetal islets resulting in localized inflammation. Although this immune response is short-lived, it results in a permanent reduction in islet vascularity and impaired insulin secretion. Neutralizing interleukin-4 antibody therapy given only in the newborn period ameliorates inflammation and restores vascularity and ß-cell function into adulthood, demonstrating a novel role for Th2 immune responses in the induction and progression of T2D. In the neonatal stage, inflammation and vascular changes are reversible and may define an important developmental window for therapeutic intervention to prevent adult-onset diabetes.


Subject(s)
Fetal Growth Retardation/immunology , Inflammation/immunology , Insulin-Secreting Cells/immunology , Islets of Langerhans/immunology , Th2 Cells/immunology , Animals , Animals, Newborn , Antibodies, Neutralizing , Fetal Growth Retardation/metabolism , Fetal Growth Retardation/pathology , Inflammation/metabolism , Inflammation/pathology , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Interleukin-4/immunology , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Rats , Th2 Cells/metabolism , Th2 Cells/pathology
4.
Am J Med Genet A ; 152A(12): 3084-90, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21108393

ABSTRACT

We describe three patients with a comparable deletion encompassing SLC25A43, SLC25A5, CXorf56, UBE2A, NKRF, and two non-coding RNA genes, U1 and LOC100303728. Moderate to severe intellectual disability (ID), psychomotor retardation, severely impaired/absent speech, seizures, and urogenital anomalies were present in all three patients. Facial dysmorphisms include ocular hypertelorism, synophrys, and a depressed nasal bridge. These clinical features overlap with those described in two patients from a family with a similar deletion at Xq24 that also includes UBE2A, and in several patients of Brazilian and Polish families with point mutations in UBE2A. Notably, all five patients with an Xq24 deletion have ventricular septal defects that are not present in patients with a point mutation, which might be attributed to the deletion of SLC25A5. Taken together, the UBE2A deficiency syndrome in male patients with a mutation in or a deletion of UBE2A is characterized by ID, absent speech, seizures, urogenital anomalies, frequently including a small penis, and skin abnormalities, which include generalized hirsutism, low posterior hairline, myxedematous appearance, widely spaced nipples, and hair whorls. Facial dysmorphisms include a wide face, a depressed nasal bridge, a large mouth with downturned corners, thin vermilion, and a short, broad neck.


Subject(s)
Intellectual Disability/genetics , Seizures/genetics , Ubiquitin-Conjugating Enzymes/genetics , Urogenital Abnormalities/genetics , Abnormalities, Multiple/genetics , Child , Child, Preschool , Chromosomes, Human, X/genetics , Humans , Infant , Male , Pedigree , Point Mutation , Skin Abnormalities/genetics , Speech Disorders/genetics , Syndrome , Ubiquitin-Conjugating Enzymes/deficiency
5.
Pediatr Res ; 64(4): 358-63, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18535492

ABSTRACT

Congenital heart disease (CHD) is the most common type of birth defect, and the etiology of most cases is unknown. CHD often occurs in association with other birth malformations, and only in a minority are disease-causing chromosomal abnormalities identified. We hypothesized that children with CHD and additional birth malformations have cryptic chromosomal abnormalities that might be uncovered using recently developed DNA microarray-based methodologies. We recruited 20 children with diverse forms of CHD and additional birth defects who had no chromosomal abnormality identified by conventional cytogenetic testing. Using whole-genome array comparative genomic hybridization, we screened this population, along with a matched control population with isolated heart defects, for chromosomal copy number variations. We discovered disease-causing cryptic chromosomal abnormalities in five children with CHD and additional birth defects versus none with isolated CHD. The chromosomal abnormalities included three unbalanced translocations, one interstitial duplication, and one interstitial deletion. The genetic abnormalities were predominantly identified in children with CHD and a neurologic abnormality. Our results suggest that a significant percentage of children with CHD and neurologic abnormalities harbor subtle chromosomal abnormalities. We propose that children who meet these two criteria should receive more extensive genetic testing to detect potential cryptic chromosomal abnormalities.


Subject(s)
Chromosome Aberrations , Heart Defects, Congenital/genetics , Comparative Genomic Hybridization , Female , Humans , In Situ Hybridization, Fluorescence , Male , Microarray Analysis
6.
Hum Genet ; 123(5): 469-76, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18404279

ABSTRACT

X-linked reticulate pigmentary disorder with systemic manifestations in males (PDR) is very rare. Affected males are characterized by cutaneous and visceral symptoms suggestive of abnormally regulated inflammation. A genetic linkage study of a large Canadian kindred previously mapped the PDR gene to a greater than 40 Mb interval of Xp22-p21. The aim of this study was to identify the causative gene for PDR. The Canadian pedigree was expanded and additional PDR families recruited. Genetic linkage was performed using newer microsatellite markers. Positional and functional candidate genes were screened by PCR and sequencing of coding exons in affected males. The location of the PDR gene was narrowed to a approximately 4.9 Mb interval of Xp22.11-p21.3 between markers DXS1052 and DXS1061. All annotated coding exons within this interval were sequenced in one affected male from each of the three multiplex families as well as one singleton, but no causative mutation was identified. Sequencing of other X-linked genes outside of the linked interval also failed to identify the cause of PDR but revealed a novel nonsynonymous cSNP in the GRPR gene in the Maltese population. PDR is most likely due to a mutation within the linked interval not affecting currently annotated coding exons.


Subject(s)
Chromosome Mapping , Genetic Diseases, X-Linked/genetics , Genetic Linkage , Pigmentation Disorders/genetics , Sequence Analysis, DNA , Female , Haplotypes , Humans , Male , Pedigree
7.
J Pediatr Urol ; 3(1): 2-9, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17476318

ABSTRACT

OBJECTIVES: 'Persistent cloaca' is a severe malformation affecting females in which the urinary, genital and alimentary tracts share a single conduit. Previously, a Uroplakin IIIA (UPIIIA) mutation was reported in one individual with persistent cloaca, and UPIIIA, Sonic Hedgehog (SHH), Ephrin B2 (EFNB2) and Hepatocyte Nuclear Factor 1beta (HNF1beta) are expressed during the normal development of organs that are affected in this condition. HNF1beta mutations have been associated with uterine malformations in humans, and mutations of genes homologous to human SHH or EFNB2 cause persistent cloaca in mice. PATIENTS AND METHODS: We sought mutations of coding regions of UPIIIA, SHH, EFNB2 and HNF1beta genes by direct sequencing in a group of 20 patients with persistent cloaca. Most had associated malformations of the upper renal tract and over half had impaired renal excretory function. The majority of patients had congenital anomalies outside the renal/genital tracts and two had the VACTERL association. RESULTS: Apart from a previously described index case, we failed to find UPIIIA mutations, and no patient had a SHH, EFNB2 or HNF1beta mutation. CONCLUSION: Persistent cloaca is only rarely associated with UPIIIA mutation. Despite the fact that SHH and EFNB2 are appealing candidate genes, based on their expression patterns and mutant mice phenotypes, they were not mutated in these humans with persistent cloaca. Although HNF1beta mutations can perturb paramesonephric duct fusion in humans, HNF1beta was not mutated in persistent cloaca.

8.
J Pediatr Urol ; 2(4): 233-242, 2006 Aug.
Article in English | MEDLINE | ID: mdl-17476316

ABSTRACT

BACKGROUND: The 13q-deletion syndrome causes human congenital birth defects due to the loss of regions of one long arm of human chromosome 13. A distal critical region for severe genitourinary and anorectal birth defects in the region of 13q32.2-34 has been suggested; we sought to narrow this critical region. METHODS: From patients with karyotypes revealing haploinsufficiency for distal chromosome 13q and their parents, peripheral blood was obtained and lymphocytes were immortalized for DNA isolation. Genetic and molecular cytogenetic methods were used to map deletions. Patient and parental samples were genotyped with a panel of 20 microsatellite markers spanning 13q31.3 qter and deletions identified by loss of heterozygosity. Deletions were also mapped using a panel of 35 BAC clones from the same region as probes for fluorescence in-situ hybridization on patient lymphoblastoid metaphase preparations. The data were synthesized and a deletion map defining the critical region was generated. RESULTS: Eight patients with known deletions around 13q32qter and their parents were analyzed, and categorized into three groups: three patients with anorectal and genitourinary anomalies (hypospadias, penoscrotal transposition), four male patients without anorectal and genitourinary anomalies, and one XY patient with ambiguous genitalia without anorectal anomalies. We mapped the critical region for anorectal and genitourinary anomalies to a approximately 9.5-Mb interval of 13q33.3-q34 delineated by markers D13S280-D13S285; this spans approximately 8% of the chromosome and contains 20 annotated genes CONCLUSION: The critical region of chromosome 13q mediating genitourinary/anorectal anomalies has been mapped, and will be narrowed by additional patients and further mapping. Identification of the gene(s) mediating these syndromic genitourinary defects should further our knowledge of molecular mediators of non-syndromic hypospadias, penoscrotal transposition and anorectal malformations.

SELECTION OF CITATIONS
SEARCH DETAIL
...