Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(23): 4674-4684, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38815182

ABSTRACT

This work presents a comprehensive study exploring the thermodynamics of the solid phase of a series of phenylimidazoles, encompassing experimental measurements of heat capacity, volatility, and thermal behavior. The influence of successive phenyl group insertions on the imidazole ring on thermodynamic properties and supramolecular behavior was thoroughly examined through the evaluation of 2-phenylimidazole (2-PhI), 4-phenylimidazole (4-PhI), 4,5-diphenylimidazole (4,5-DPhI), and 2,4,5-triphenylimidazole (2,4,5-TPhI). Structural correlations between molecular structure and thermodynamic properties were established. Furthermore, the investigation employed UV-vis spectroscopy and quantum chemical calculations. Additive effects arising from the introduction of phenyl groups were found through the analysis of the solid-liquid and solid-gas equilibria, as well as heat capacities. A good correlation emerged between the thermodynamic properties of sublimation and the molar volume of the unit cell, evident across 2-PhI, 4,5-DPhI, and 2,4,5-TPhI. In contrast to its isomer 2-PhI, 4-PhI exhibited greater cohesive energy due to the stronger N-H···N intermolecular interactions, leading to the disruption of coplanar geometry in the 4-PhI molecules. The observed higher entropies of phase transition (fusion and sublimation) are consistent with the higher structural order observed in the crystalline lattice of 4-PhI.

2.
J Phys Chem B ; 128(15): 3742-3754, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38573787

ABSTRACT

The thermodynamic properties of ionic liquids (ILs) bearing alkylsilane and alkylsiloxane chains, as well as their carbon-based analogs, were investigated. Effects such as the replacement of carbon atoms by silicon atoms, the introduction of a siloxane linkage, and the length of the alkylsilane chain were explored. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were used to study the thermal and phase behavior (glass transition temperature, melting point, enthalpy and entropy of fusion, and thermal stability). Heat capacity was obtained by high-precision drop calorimetry and differential scanning microcalorimetry. The volatility and cohesive energy of these ILs were investigated via the Knudsen effusion method coupled with a quartz crystal microbalance (KEQCM). Gas phase energetics and structure were also studied to obtain the gas phase heat capacity as well as the energy profile associated with the rotation of the IL side chain. The computational study suggested the existence of an intramolecular interaction in the alkylsiloxane-based IL. The obtained glass transition temperatures seem to follow the trend of chain flexibility. An increase of the alkylsilane chain leads to a seemingly linear increase in molar heat capacity. A regular increment of 30 J·K-1·mol-1 in the molar heat capacity was found for the replacement of carbon by silicon in the IL alkyl chain. The alkylsilane series was revealed to be slightly more volatile than its carbon-based analogs. A further increase in volatility was found for the alkylsiloxane-based IL, which is likely related to the decrease of the cohesive energy due to the existence of an intramolecular interaction between the siloxane linkage and the imidazolium headgroup. The use of Si in the IL structure is a suitable way to significantly reduce the IL's viscosity while preserving its large liquid range (low melting point and high thermal stability) and low volatilities.

3.
Langmuir ; 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38343280

ABSTRACT

Thin films of ionic liquids (ILs) have gained significant attention due to their unique properties and broad applications. Extensive research has focused on studying the influence of ILs' chemical composition and substrate characteristics on the structure and morphology of IL films at the nano- and mesoscopic scales. This study explores the impact of carbon-coated surfaces on the morphology and wetting behavior of a series of alkylimidazolium-based ILs. Specifically, this work investigates the effect of carbon coating on the morphology and wetting behavior of short-chain ([C2C1im][NTf2] and [C2C1im][OTf]) and long-chain ([C8C1im][NTf2] and [C8C1im][OTf]) ILs deposited on indium tin oxide (ITO), silver (Ag), and gold (Au) substrates. A reproducible vapor deposition methodology was utilized for the deposition process. High-resolution scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy were used to analyze the morphological and structural characteristics of the substrates and obtained IL films. The experimental data revealed that the IL films deposited on carbon-coated Au substrates showed minor changes in their morphology compared to that of the films deposited on clean Au surfaces. However, the presence of carbon coatings on the ITO and Ag surfaces led to significant morphological alterations in the IL films. Specifically, for short-chain ILs, the carbon film surface induced 2D growth of the IL film, followed by subsequent island growth. In contrast, for long-chain ILs deposited on carbon surfaces, layer-by-layer growth occurred without island formation, resulting in highly uniform and coalesced IL films. The extent of morphological changes observed in the IL films was found to be influenced by two crucial factors: the thickness of the carbon film on the substrate surface and the amount of IL deposition.

4.
ACS Sustain Chem Eng ; 11(21): 8084-8095, 2023 May 29.
Article in English | MEDLINE | ID: mdl-37266353

ABSTRACT

The control of the oxidative stability of biodiesel and blends of biodiesel with diesel is one of the major concerns of the biofuel industry. The oxidative degradation of biodiesel can be accelerated by several factors, and this is most critical in the so-called second generation biodiesel, which is produced from low-cost raw materials with lower environmental impacts. The addition of antioxidants is imperative to ensure the oxidative stability of biodiesel, and these are considered products of high commercial value. The antioxidants currently available on the market are from synthetic origin, so the existence/availability of alternative antioxidants of natural origin (less dependent on fossil sources) at a competitive price presents itself as a strong business opportunity. This work describes and characterizes a sustainable alternative to synthetic antioxidants used in the biodiesel market developed from extracts of vineyard pruning waste (VPW), which are naturally rich in phenolic compounds with antioxidant properties. A hydrothermal extraction process was applied as a more efficient and sustainable technology than the conventional one with the potential of the extracts as antioxidant additives in biodiesel evaluated in Rancitech equipment. The VPW extract showed comparable antioxidant activity as the commercial antioxidant butylated hydroxytoluene (BHT) typically used in biodiesel. The stability of the biodiesel is dependent from the amount of the extract added. Further, for the first time, the assessment of the environmental impacts of using natural extracts to control the oxidative stability of biodiesel in the production process is also discussed as a key factor of the process environmental sustainability.

5.
Phys Chem Chem Phys ; 25(19): 13359-13375, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37145056

ABSTRACT

Decaphenylbiphenyl (1) and 2,2',4,4',6,6'-hexaphenylbiphenyl (2) are bulky molecules expected to be greatly destabilized by steric crowding. Herein, through a combined experimental and computational approach, we evaluate the molecular energetics of crowded biphenyls. This is complemented by the study of phase equilibria for 1 and 2. Compound 1 shows a rich phase behavior, displaying an unusual interconversion between two polymorphs. Surprisingly, the polymorph with distorted molecules of C1 symmetry is found to have the highest melting point and to be the one that is preferentially formed. The thermodynamic results also indicate that the polymorph displaying the more regular D2 molecular geometry has larger heat capacity and is probably the more stable at lower temperatures. The melting and sublimation data clearly reveal the weakening of cohesive forces in crowded biphenyls due to the lower molecular surface area. The experimental quantification of the intramolecular interactions in 1 and 2 indicated, using homodesmotic reactions, a molecular stabilization of about 30 kJ mol-1. We attribute the origin of this stabilization in both compounds to the existence of two parallel-displaced π⋯π interactions between the ortho-phenyl substituents on each side of the central biphenyl. Computational calculations with dispersion-corrected DFT methods underestimate the stabilization in 1, unless the steric crowding is well balanced in a homodesmotic scheme. This work demonstrates that London dispersion forces are important in crowded aromatic systems, making these molecules considerably more stable than previously thought.

6.
Phys Chem Chem Phys ; 25(16): 11227-11236, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37039782

ABSTRACT

The solid-liquid phase behaviour of two tertiary alcohols, perfluoro-tert-butanol and tert-butanol, was studied here using experimental (ITC, DSC and density measurements) and theoretical (MD simulations) approaches. The phase diagram of the binary mixture reveals highly negative deviations from ideality at low concentrations, as well as the formation of co-crystals and is characterized by two eutectic points, a congruent melting point and a peritectic reaction corresponding to TBH : TBF stoichiometries of 2 : 1 and 1 : 1 respectively. Excess molar enthalpies and volumes were calculated, showing negative and positive deviations from ideality, respectively. The effect of acidity, stereochemical hindrance and phobic effects and how they affect intermolecular interactions in these binary mixtures is discussed, with the aim of designing and fine-tuning type V deep eutectic solvents. The results showed that the fluorination of tertiary alcohols can be used for the tuning of the mixing properties and solid-liquid phase diagrams.

7.
Molecules ; 28(7)2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37049791

ABSTRACT

This work reports the formation of silver nanoparticles (AgNPs) by sputter deposition in thin films of three different ionic liquids (ILs) with the same anion (bis(trifluoromethylsulfonyl)imide) and cation (imidazolium), but with different alkyl chain lengths and symmetries in the cationic moiety ([C4C1im][NTf2], [C2C2im][NTf2], and [C5C5im][NTf2]). Ionic liquid (IL) films in the form of microdroplets with different thicknesses (200 to 800 monolayers) were obtained through vacuum thermal evaporation onto glass substrates coated with indium tin oxide (ITO). The sputtering process of the Ag onto the ILs when conducted simultaneously with argon plasma promoted the coalescence of the ILs' droplets and the formation, incorporation, and stabilization of the metallic nanoparticles in the coalesced IL films. The formation/stabilization of the AgNPs in the IL films was confirmed using high-resolution scanning electron microscopy (SEM) and UV-Vis spectroscopy. It was found that the IL films with larger thicknesses (600 and 800 monolayers) were better media for the formation of AgNPs. Among the ILs used, [C5C5im][NTf2] was found to be particularly promising for the stabilization of AgNPs. The use of larger IL droplets as capture media was found to promote a better stabilization of the AgNPs, thereby reducing their tendency to aggregate.

8.
Phys Chem Chem Phys ; 24(24): 14886-14897, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35674089

ABSTRACT

The importance of choline chloride (ChCl) is recognized due to its widespread use in the formulation of deep eutectic solvents. The controlled addition of water in deep eutectic solvents has been proposed to overcome some of the major drawbacks of these solvents, namely their high hygroscopicities and viscosities. Recently, aqueous solutions of ChCl at specific mole ratios have been presented as a novel, low viscous deep eutectic solvent. Nevertheless, these proposals are suggested without any information about the solid-liquid phase diagram of this system or the deviations from the thermodynamic ideality of its precursors. This work contributes significantly to this matter as the phase behavior of pure ChCl and (ChCl + H2O) binary mixtures was investigated by calorimetric and analytical techniques. The thermal behavior and stability of ChCl were studied by polarized light optical microscopy and differential scanning calorimetry, confirming the existence of a solid-solid transition at 352.2 ± 0.6 K. Additionally, heat capacity measurements of pure ChCl (covering both ChCl solid phases) and aqueous solutions of ChCl (xChCl < 0.4) were performed using a heat-flow differential scanning microcalorimeter or a high-precision heat capacity drop calorimeter, allowing the estimation of a heat capacity change of (ChCl) ≈ 39.3 ± 10 J K-1 mol-1, between the hypothetical liquid and the observed crystalline phase at 298.15 K. The solid-liquid phase diagram of the ChCl + water mixture was investigated in the whole concentration range by differential scanning calorimetry and the analytical shake-flask method. The phase diagram obtained for the mixture shows an eutectic temperature of 204 K, at a mole fraction of choline chloride close to xChCl = 0.2, and a shift of the solid-solid transition of ChCl-water mixtures of 10 K below the value observed for pure choline chloride, suggesting the appearance of a new crystalline structure of ChCl in the presence of water, as confirmed by X-ray diffraction. The liquid phase presents significant negative deviations to ideality for water while COSMO-RS predicts a near ideal behaviour for ChCl.

9.
Molecules ; 27(9)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35565999

ABSTRACT

The formation of deep eutectic solvents (DES) is tied to negative deviations to ideality caused by the establishment of stronger interactions in the mixture than in the pure DES precursors. This work tested thymol and menthol as hydrogen bond donors when combined with different flavonoids. Negative deviations from ideality were observed upon mixing thymol with either flavone or flavanone, two parent flavonoids that only have hydrogen bond acceptor (HBA) groups, thus forming non-ionic DES (Type V). On the other hand, the menthol systems with the same compounds generally showed positive deviations from ideality. That was also the case with the mixtures containing the more complex hydroxylated flavonoid, hesperetin, which resulted in positive deviations when mixed with either thymol or menthol. COSMO-RS successfully predicted the behavior of the solid-liquid phase diagram of the studied systems, allowing for evaluation of the impact of the different contributions to the intermolecular interactions, and proving to be a good tool for the design of DES.


Subject(s)
Deep Eutectic Solvents , Flavonoids , Menthol , Solvents/chemistry , Terpenes , Thymol
10.
Phys Chem Chem Phys ; 24(21): 13343-13355, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35608141

ABSTRACT

Ionic liquids (ILs) have been widely used for energy storage and conversion devices due to their negligible vapor pressure, high thermal stability, and outstanding interfacial properties. Notably, the interfacial nanostructure and the wettability of thin ionic liquid films on solid surfaces are of utmost relevance in nanosurface science and technology. Herein, a reproducible physical vapor deposition methodology was used to fabricate thin films of four alkylimidazolium bis(trifluoromethylsulfonyl)imide ILs. The effect of the cation alkyl chain length on the wettability of ILs was explored on different surfaces: gold (Au); silver (Ag); indium-tin oxide (ITO). High-resolution scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to evaluate the morphology of the produced micro- and nanodroplets and films. SEM and AFM results revealed an island growth for all the ILs deposited on ITO and Ag surfaces, with a lower minimum free area to promote nucleation (MFAN) in Ag and higher wettability for ILs having larger non-polar domains. The low wettability of ITO by the studied ILs was highlighted. For long-chain ILs, nucleation and growth mechanisms were strongly conditioned by coalescence processes. The results also supported the higher affinity of the ILs to the Au surface. The increase in the length of the cation alkyl chain was found to promote a better film adhesion inducing a 2D growth and higher wetting ability.

11.
Dalton Trans ; 51(9): 3520-3530, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35142773

ABSTRACT

Chlorins are highly interesting compounds due to their spectroscopic properties in both UV-Vis and NIR regions. Upon coordination to a metal ion, the corresponding metallochlorins exhibit more valuable physicochemical properties that enable a broader range of applications, such as in photodynamic therapy (PDT), water splitting catalysis, optical sensor devices and dye-sensitized solar cells. Synthetic chemistry has been in a continuous quest to fulfil most green chemistry requirements through the development of efficient reactions. Being a heating process that does not depend on heat transfer to the reaction medium, ohmic heating accomplishes the mentioned requirements and allows a fast and uniform heating regime thanks to the ionic conductivity of the reaction medium. Herein, we report the metallation of pyrrolidine- and isoxazolidine-fused chlorins with Zn(II), Cu(II) and Pd(II) salts by ohmic heating, using non-toxic aqueous solutions, and their corresponding physico-chemical characterization. All pyrrolidine-fused chlorins showed higher yields, when compared with isoxazolidine ones. From the thermogravimetric analysis performed it is possible to infer that the metal enhances the steadiness of the macrocycle, making it easier to cause the thermal decomposition of the pyrrolidine- and isoxazolidine-fused chlorins. The Zn(II) complexes showed high absorption in the NIR spectral region, a low fluorescence quantum yield and a short excited singlet state, which indicate the high efficiency of intersystem crossing to the triplet state, making them very promising candidates as photosensitizers for PDT.

12.
J Phys Chem A ; 125(17): 3696-3709, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33890788

ABSTRACT

The thermodynamic properties and band gap energies were evaluated for six ortho- and peri-fused polycyclic aromatic hydrocarbons (PAHs): triphenylene; benzo[a]pyrene; benzo[e]pyrene; perylene; benzo[ghi]perylene; coronene. The standard molar enthalpies of formation in the crystalline state and the standard molar enthalpies of sublimation were measured by high precision combustion calorimetry and Knudsen effusion methodology, respectively. The combination of the molar enthalpies of formation in the crystalline state with the respective enthalpies of sublimation was used to evaluate the energetics of the progressive peri-fusion of the aromatic moieties from triphenylene to coronene aiming to investigate the hypothetical superaromaticity character of coronene. The linear trend of the enthalpy of formation in crystalline and gaseous phases in the series (from benzo[e]pyrene to coronene) is an irrefutable indication of a non-superaromaticity character of coronene. High accurate thermodynamic properties of sublimation (volatility, enthalpy, and entropy of sublimation) were derived by the measurement of vapor pressures as a function of temperature, using a Knudsen/quartz crystal effusion methodology. Furthermore, the π-electronic conjugation of these compounds was explored by evaluation of the optical band gaps along with this series of compounds. The morphology of perylene, benzo[ghi]perylene, and coronene thin films, deposited by physical vapor deposition onto transparent conductive oxide substrates (ITO and FTO), was used to analyze the nucleation and growth mechanisms. The morphologies observed were found to be related to the cohesive energy and entropy of the bulk.

13.
Chemphyschem ; 21(16): 1814-1825, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32579732

ABSTRACT

In this study, a homogeneous thin film growth of pentacene onto indium tin oxide (ITO) coated glass surfaces is explored using a high-resolution and reproducible vapor deposition methodology. Moreover, vacuum thermal evaporation of ionic liquids (ILs) ([C2 C1 im][NTf2 ] and [C2 C1 im][OTF]) onto ITO, gold/palladium (AuPd) and pentacene surfaces were performed. A greater wettability behavior of ILs is observed for surfaces containing AuPd. Sequential and simultaneous depositions of ILs and pentacene were explored. Simultaneous depositions lead to the formation of nanocomposites films, consisting of IL micro- and nanodroplets covered by pentacene layers. Plasma surface treatment was used to induce the ILs droplets coalescence and explore the dynamics and phase separation of the nanocomposites. The [C2 C1 im][OTF] droplets were found to be completely covered with pentacene, which suggests a great affinity between cation-anion pairs and the aromatic moiety. Pentacene films and their nanocomposites with ILs exhibit a typical optical band gap of Egap =1.77 eV, indicating that the nanocomposite phase domains are large enough to behavior as the bulk.

14.
Chemphyschem ; 21(9): 938-951, 2020 05 05.
Article in English | MEDLINE | ID: mdl-32232929

ABSTRACT

This work presents a new Knudsen effusion apparatus employing continuous monitoring of sample deposition using a quartz-crystal microbalance sensor with internal calibration by gravimetric determination of the sample mass loss. The apparatus was tested with anthracene and 1,3,5-triphenylbenzene and subsequently used for the study of sublimation behavior of several proteinogenic amino acids. Their low volatility and thermal instability strongly limit possibilities of studying their sublimation behavior and available literature data. The results presented in this work are unique in their temperature range and low uncertainty required for benchmarking theoretical studies of sublimation behavior of molecular crystals. The possibility of dimerization in the gas phase that would invalidate the effusion experiments is addressed and disproved by theoretical calculations. The enthalpy of sublimation of each amino acid is analyzed based on the contributions in two hypothetical sublimation paths involving the proton transfer in the solid and in the gas phase.

15.
RSC Adv ; 10(20): 11766-11776, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-35496587

ABSTRACT

The impact of structural differentiation between phenylcarbazoles (PhC, mCP, CBP, TCB) and phenylamines (TPA, BDB, TPB, TDAB) on the phase equilibria, optical spectrum, band gap, and thin-film morphology is evaluated and discussed. The carbazolyl units lead to a lower electronic conjugation contributing to a wide band gap when compared with the diphenylamine analogs. The fusion and sublimation equilibria indicate that entropic contribution is the key factor for the distinguished melting behavior and solid-phase volatility between phenylcarbazole derivatives and phenylamine analogs. The molecular differentiation between the two classes of compounds is not reflected in the crystal packing and intermolecular interactions. However, compared with the diphenylamino groups, the incorporation of carbazolyl moieties contributes to a less flexible molecule. Moreover, the results evidence that intermolecular bonding disruption along the fusion transition is more extensive for phenylamine derivatives. Due to the asymmetric nonplanar structure, mCP is characterized by a ratio of {T g/T m ≈ 3/4} while the more symmetric CBP and TCB molecules display ratios closer to {T g/T m ≈ 2/3}. Vapor-deposited thin films of mCP, CBP, and TCB are amorphous and their morphology is highly dependent on the substrate roughness. The lower flexibility of nonplanar phenylcarbazoles induces the formation of a glassy state due to the harder packing mechanism leading to the lower ability of the crystallization process.

16.
Chemistry ; 25(66): 15073-15082, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31379010

ABSTRACT

A series of pyridyl analogues of rosamines was prepared by employing two methodologies: (i) the conventional-heating condensation of a pyridinecarboxaldehyde with 3-(diethylamino)phenol in propionic acid, and (ii) the novel ohmic-heating assisted condensation under "on water" conditions, followed by oxidation. The 4-pyridyl substituted rosamine was further converted into the N-methylpyridinium derivative through N-alkylation using methyl iodide. The influence of the position and cationization of the nitrogen atom of the pyridyl ring in the physicochemical properties of fluorophores was investigated by 1 H, 13 C, 15 N NMR spectral analysis, UV/Vis and fluorescence spectroscopy, single-crystal X-ray diffraction (4-pyridyl and N-methylpyridinium derivatives) and thermal-behavior analysis. Curiously, for ethanolic solutions of 4-pyridyl and N-methylpyridinium derivatives an extinction of color and fluorescence over time was observed. This phenomenon was further studied and the data revealed that it is the result of nucleophilic addition of ethoxide ion to the central 9-position of the xanthene. The kinetics of the process is slower for the 4-pyridyl rosamine, which emphasizes the importance of the charge in the N-methylpyridinium analogue in the reactivity of the molecule towards a nucleophile agent. This phenomenon is reversible, meaning that the compounds can be rapidly recovered by decreasing the pH, opening new avenues in the sensing applications of this class of rosamines.

17.
J Solution Chem ; 48(7): 983-991, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31409937

ABSTRACT

The order of the salting-in or salting-out inducing ability of ions on the aqueous solubility of macromolecules in aqueous solutions is known as the Hofmeister series. Taking into account that ionic liquids (ILs) are constituted by ions, they can exert similar effects on the solubility of other ILs in aqueous media. In order to expand the knowledge on the salting-in/-out ability of ILs, experimental studies on the solubility of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonylimide) in water in presence of other IL/salts were conducted at 298.15 K at atmospheric pressure. Both the impact of the anion and cation of the IL were evaluated with the following ILs/salts: 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium hydrogensulfate, cholinium bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and lithium bis(trifluoromethylsulfonyl)imide, in a wide composition range. As happens with common salts, both salting-in and salting-out effects exerted by ILs were observed, with a higher impact exerted by the IL anion on the salting-out phenomenon. These data allow to better understand the ILs impact when designing liquid-liquid separation processes.

18.
Chemphyschem ; 20(5): 727-735, 2019 03 04.
Article in English | MEDLINE | ID: mdl-30672638

ABSTRACT

Twelve surface-active ionic liquids (SAILs) and surface-active derivatives, based on imidazolium, ammonium, and phosphonium cations and containing one, or more, long alkyl chains in the cation and/or the anion, were synthetized and characterized. The aggregation behavior of these SAILs in water, as well as their adsorption at solution/air interface, were studied by assessing surface tension and conductivity. The CMC values obtained (0.03-6.0 mM) show a high propensity of these compounds to self-aggregate in aqueous media. Their thermal properties were also characterized, namely the melting point and decomposition temperature by using DSC and TGA, respectively. Furthermore, the toxicity of these SAILs was evaluated using the marine bacteria Aliivibrio fischeri (Gram-negative). According to the EC50 values obtained (0.3-2.7 mg L-1 ), the surface-active compounds tested should be considered "toxic" or "highly toxic". Their ability to induce cell disruption of Escherichia coli cells (also Gram-negative), releasing the intracellular green fluorescent protein (GFP) produced, was investigated. The results clearly evidence the capability of these SAILs to act as cell disruption agents.


Subject(s)
Escherichia coli/chemistry , Escherichia coli/drug effects , Ionic Liquids/chemical synthesis , Ionic Liquids/pharmacology , Ammonium Compounds/chemistry , Escherichia coli/cytology , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/chemistry , Imidazoles/chemistry , Ionic Liquids/chemistry , Ionic Liquids/metabolism , Organophosphorus Compounds/chemistry , Surface Properties
19.
Chemphyschem ; 19(18): 2364-2369, 2018 09 18.
Article in English | MEDLINE | ID: mdl-29799151

ABSTRACT

Herein, we present experimental evidence that protic ionic liquids (PILs), derived from 1 : 1 liquid mixtures of the organic superbases 1,5-diazabicyclo[4.3.0]non-5-ene (DBN) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) with carboxylic acids, form azeotropic mixtures with acid/base molar fractions different from 1 : 1. The ability of the carboxylic acids to form strong hydrogen bonds with the PIL ion pair leads to an azeotropic composition richer in the acid component. The results show that the azeotropic composition is ruled by the extent of acid-base equilibrium and the relative volatility of the neutral species in the PIL medium. The PILs show marked negative deviations from Raoult's Law with the stronger superbase (DBU) leading to an azeotropic composition closer to the equimolar 1 : 1 ratio.

20.
Phys Chem Chem Phys ; 20(4): 2536-2548, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29318232

ABSTRACT

In this work, we studied the effect of anion and cation properties on the interaction of alcohols with ionic liquids (ILs), using propan-1-ol as a molecular probe. The enthalpies of solution at infinite dilution of propan-1-ol in several ILs were measured by isothermal titration calorimetry (ITC). The calorimetric results were analysed together with molecular dynamics simulation and quantum chemical calculations of the interaction of the hydroxyl group of propan-1-ol with the anions. The results evidenced the role of the anion's basicity in the intermolecular interactions of alcohols and ionic liquids and further revealed a secondary effect of the cation nature on the solvation process. The effect of the anion basicity on the strength of the interaction of alcohols with ionic liquids was evaluated by comparing the results obtained for ILs with the same cation and different anions, [C4C1im][anion] (anions NTf2, PF6, FAP, DCA and TFA). The effect of the cation (size, aromaticity, charge distribution, and acidity) was explored using five different cations of the NTf2 series, [cation][NTf2] (cations C4C1im, C4C1pirr, C4py, C4C1pip, and C3C1C1im).

SELECTION OF CITATIONS
SEARCH DETAIL
...