Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Language
Publication year range
1.
Clinics (Sao Paulo) ; 78: 100242, 2023.
Article in English | MEDLINE | ID: mdl-37480642

ABSTRACT

BACKGROUND: The 6-OHDA nigro-striatal lesion model has already been related to disorders in the excitability and synchronicity of neural networks and variation in the expression of transmembrane proteins that control intra and extracellular ionic concentrations, such as cation-chloride cotransporters (NKCC1 and KCC2) and Na+/K+-ATPase and, also, to the glial proliferation after injury. All these non-synaptic mechanisms have already been related to neuronal injury and hyper-synchronism processes. OBJECTIVE: The main objective of this study is to verify whether mechanisms not directly related to synaptic neurotransmission could be involved in the modulation of nigrostriatal pathways. METHODS: Male Wistar rats, 3 months old, were submitted to a unilateral injection of 24 µg of 6-OHDA, in the striatum (n = 8). The animals in the Control group (n = 8) were submitted to the same protocol, with the replacement of 6-OHDA by 0.9% saline. The analysis by optical densitometry was performed to quantify the immunoreactivity intensity of GFAP, NKCC1, KCC2, Na+/K+-ATPase, TH and Cx36. RESULTS: The 6-OHDA induced lesions in the striatum, were not followed by changes in the expression cation-chloride cotransporters and Na+/K+-ATPase, but with astrocytic reactivity in the lesioned and adjacent regions of the nigrostriatal. Moreover, the dopaminergic degeneration caused by 6-OHDA is followed by changes in the expression of connexin-36. CONCLUSIONS: The use of the GJ blockers directly along the nigrostriatal pathways to control PD motor symptoms is conjectured. Electrophysiology of the striatum and the substantia nigra, to verify changes in neuronal synchronism, comparing brain slices of control animals and experimental models of PD, is needed.


Subject(s)
Parkinson Disease , Symporters , Rats , Animals , Male , Oxidopamine , Rats, Wistar , Chlorides , Disease Models, Animal , Adenosine Triphosphatases
2.
Clinics (Sao Paulo) ; 78: 100159, 2023.
Article in English | MEDLINE | ID: mdl-36774732

ABSTRACT

OBJECTIVE: Amygdala has been demonstrated as one of the brain sites involved in the control of cardiorespiratory functioning. The structural and physiological alterations induced by epileptic activity are also present in the amygdala and reflect functional changes that may be directly associated with a sudden unexpected death. Seizures are always associated with neuronal damage and changes in the expression of cation-chloride cotransporters and Na/K pumps. In this study, the authors aimed to investigate if these changes are present in the amygdala after induction of status epilepticus with pilocarpine, which may be directly correlated with Sudden Unexpected Death in Epilepsy (SUDEP). METHODS: Pilocarpine-treated wistar rats 60 days after Status Epilepticus (SE) were compared with control rats. Amygdala nuclei of brain slices immunostained for NKCC1, KCC2 and α1-Na+/K+-ATPase, were quantified by optical densitometry. RESULTS: The amygdaloid complex of the animals submitted to SE had no significant difference in the NKCC1 immunoreactivity, but KCC2 immunoreactivity reduced drastically in the peri-somatic sites and in the dendritic-like processes. The α1-Na+/K+-ATPase peri-somatic immunoreactivity was intense in the rats submitted to pilocarpine SE when compared with control rats. The pilocarpine SE also promoted intense GFAP staining, specifically in the basolateral and baso-medial nuclei with astrogliosis and cellular debris deposition. INTERPRETATION: The findings revealed that SE induces lesion changes in the expression of KCC2 and α1-Na+/K+-ATPase meaning intense change in the chloride regulation in the amygdaloid complex. These changes may contribute to cardiorespiratory dysfunction leading to SUDEP.


Subject(s)
Amygdala , Status Epilepticus , Sudden Unexpected Death in Epilepsy , Animals , Rats , Adenosine Triphosphatases/metabolism , Amygdala/pathology , Chlorides/metabolism , Disease Models, Animal , Hippocampus/metabolism , Hippocampus/pathology , Homeostasis , Pilocarpine/adverse effects , Rats, Wistar , Status Epilepticus/chemically induced , Status Epilepticus/pathology , Sudden Unexpected Death in Epilepsy/pathology , Symporters/metabolism
3.
Clinics ; 78: 100159, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1421258

ABSTRACT

Objective: Amygdala has been demonstrated as one of the brain sites involved in the control of cardiorespiratory functioning. The structural and physiological alterations induced by epileptic activity are also present in the amygdala and reflect functional changes that may be directly associated with a sudden unexpected death. Seizures are always associated with neuronal damage and changes in the expression of cation-chloride cotransporters and Na/K pumps. In this study, the authors aimed to investigate if these changes are present in the amygdala after induction of status epilepticus with pilocarpine, which may be directly correlated with Sudden Unexpected Death in Epilepsy (SUDEP). Methods: Pilocarpine-treated wistar rats 60 days after Status Epilepticus (SE) were compared with control rats. Amygdala nuclei of brain slices immunostained for NKCC1, KCC2 and α1-Na+/K+-ATPase, were quantified by optical densitometry. Results: The amygdaloid complex of the animals submitted to SE had no significant difference in the NKCC1 immunoreactivity, but KCC2 immunoreactivity reduced drastically in the peri-somatic sites and in the dendritic-like processes. The α1-Na+/K+-ATPase peri-somatic immunoreactivity was intense in the rats submitted to pilocarpine SE when compared with control rats. The pilocarpine SE also promoted intense GFAP staining, specifically in the basolateral and baso-medial nuclei with astrogliosis and cellular debris deposition. Interpretation: The findings revealed that SE induces lesion changes in the expression of KCC2 and α1-Na + /K + -ATPase meaning intense change in the chloride regulation in the amygdaloid complex. These changes may contribute to cardiorespiratory dysfunction leading to SUDEP.

4.
Clinics ; 78: 100242, 2023. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1506005

ABSTRACT

Abstract Background The 6-OHDA nigro-striatal lesion model has already been related to disorders in the excitability and synchronicity of neural networks and variation in the expression of transmembrane proteins that control intra and extracellular ionic concentrations, such as cation-chloride cotransporters (NKCC1 and KCC2) and Na+/K+-ATPase and, also, to the glial proliferation after injury. All these non-synaptic mechanisms have already been related to neuronal injury and hyper-synchronism processes. Objective The main objective of this study is to verify whether mechanisms not directly related to synaptic neurotransmission could be involved in the modulation of nigrostriatal pathways. Methods Male Wistar rats, 3 months old, were submitted to a unilateral injection of 24 µg of 6-OHDA, in the striatum (n= 8). The animals in the Control group (n= 8) were submitted to the same protocol, with the replacement of 6-OHDA by 0.9% saline. The analysis by optical densitometry was performed to quantify the immunoreactivity intensity of GFAP, NKCC1, KCC2, Na+/K+-ATPase, TH and Cx36. Results The 6-OHDA induced lesions in the striatum, were not followed by changes in the expression cation-chloride cotransporters and Na+/K+-ATPase, but with astrocytic reactivity in the lesioned and adjacent regions of the nigrostriatal. Moreover, the dopaminergic degeneration caused by 6-OHDA is followed by changes in the expression of connexin-36. Conclusions The use of the GJ blockers directly along the nigrostriatal pathways to control PD motor symptoms is conjectured. Electrophysiology of the striatum and the substantia nigra, to verify changes in neuronal synchronism, comparing brain slices of control animals and experimental models of PD, is needed.

5.
Sci Rep ; 11(1): 16780, 2021 08 18.
Article in English | MEDLINE | ID: mdl-34408211

ABSTRACT

There are no clinical interventions to prevent post-injury epilepsy, a common and devastating outcome after brain insults. Epileptogenic events that run from brain injury to epilepsy are poorly understood. Previous studies in our laboratory suggested Proechimys, an exotic Amazonian rodent, as resistant to acquired epilepsy development in post-status epilepticus models. The present comparative study was conducted to assess (1) stroke-related brain responses 24-h and 30 days after cortical photothrombosis and (2) post-stroke epilepsy between Proechimys rodents and Wistar rats, a traditional animal used for laboratory research. Proechimys group showed smaller volume of ischemic infarction and lesser glial activation than Wistar group. In contrast to Wistar rats, post-stroke decreased levels of pro-inflammatory cytokines and increased levels of anti-inflammatory mediators and growth factors were found in Proechimys. Electrophysiological signaling changes assessed by cortical spreading depression, in vitro and in vivo, showed that Wistar's brain is most severely affected by stroke. Chronic electrocorticographic recordings showed that injury did not lead to epilepsy in Proechimys whereas 88% of the Wistar rats developed post-stroke epilepsy. Science gains insights from comparative studies on diverse species. Proechimys rodents proved to be a useful animal model to study antiepileptogenic mechanisms after brain insults and complement conventional animal models.


Subject(s)
Epilepsy/metabolism , Rainforest , Status Epilepticus/metabolism , Stroke/metabolism , Animals , Rats , Rats, Wistar
6.
Med Biol Eng Comput ; 57(12): 2617-2627, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31667705

ABSTRACT

External electric fields (E) induce a spatially heterogeneous variation in the membrane potential (ΔVm) of cardiomyocytes that, if sufficiently large, results in an action potential and contraction. Insights into the phenomenon of ΔVm induction by E have been classically gained with electromagnetic models due to the lack of adequate experimental approaches. However, it is not clear yet how reliable these models are. To assess the accuracy of commonly used models, a reference 3D numerical model for cardiomyocytes (NMReal) was developed, consisting of the cell membrane shell reconstructed from rendered confocal microscopy images of freshly isolated ventricular myocytes. NMReal was used to estimate the E-induced maximum ΔVm values (ΔVmax), which were compared with estimates from seven other electromagnetic models. Accurate ΔVmax estimates (average error < 2%) were obtained with a less complex 3D model (NM3D) based on the extruded 2D image of the cell longitudinal section. Acceptable ΔVmax estimates (average error < 5%) were obtained with the prolate spheroid analytical model (PSAM) when the angle of E incidence and the cell major axis was < 30°. In this case, PSAM, a much simpler model requiring only the measurement of the longitudinal and transversal cell dimensions, can be a suitable alternative for ΔVmax calculation. Graphical abstract (A) Confocal images of the cell were used to reconstruct the realistic geometry of cardiomyocytes (NMReal). (B) NMReal was used to estimate the maximum variation in the transmembrane potential (ΔVmax) induced by an external electric field (E) applied at different angles with respect to the cell major axis. Plus (anode) and minus (cathode) signs indicate electrode position (E direction is from minus to plus). (C) Relative error (vs. NMReal) of ΔVmax estimation with simplified electromagnetic models, presented in descending order of accuracy (left-to-right, top-to-bottom). NM2D: 2D numerical model based on the longitudinal cell image; NM3D: numerical model based on the z extrusion of NM2D; EAM, PSAM, and CAM: ellipsoidal, prolate spheroidal, and cylindrical analytical models, respectively; PNM and CNM: parallelepipedal and cylindrical numerical models, respectively.


Subject(s)
Cell Membrane/physiology , Membrane Potentials/physiology , Myocytes, Cardiac/physiology , Animals , Electromagnetic Fields , Male , Rats, Wistar
7.
Front Neurosci ; 11: 98, 2017.
Article in English | MEDLINE | ID: mdl-28298884

ABSTRACT

Neurogenesis impairment is associated with the chronic phase of the epilepsy in humans and also observed in animal models. Recent studies with animal models have shown that physical exercise is capable of improving neurogenesis in adult subjects, alleviating cognitive impairment and depression. Here, we show that there is a reduction in the generation of newborn granule cells in the dentate gyrus of adult rats subjected to a chronic model of epilepsy during the postnatal period of brain development. We also show that the physical exercise was capable to restore the number of newborn granule cells in this animals to the level observed in the control group. Notably, a larger number of newborn granule cells exhibiting morphological characteristics indicative of correct targeting into the hippocampal circuitry and the absence of basal dendrite projections was also observed in the epileptic animals subjected to physical exercise compared to the epileptic animals. The results described here could represent a positive interference of the physical exercise on the neurogenesis process in subjects with chronic epilepsy. The results may also help to reinterpret the benefits of the physical exercise in alleviating symptoms of depression and cognitive dysfunction.

8.
Neuroscience ; 340: 530-541, 2017 01 06.
Article in English | MEDLINE | ID: mdl-27871891

ABSTRACT

Nonsynaptic mechanism changes, particularly the enhancement of NKCC1 expression in the dentate gyrus (DG) after 4weeks of ethanol consumption, motivate the present work, in which rats were submitted to a period of chronic consumption (12weeks). Four groups of six animals (6-week-old male Wistar rats) were formed, including the control (C), ethanol 1 (E1), ethanol 2 (E2) and ethanol 3 (E3) groups. The rats in the E1, E2 and E3 groups were treated daily with a 30% v/v solution of ethanol, administered via oral gavage (1.0, 2.0 and 3.0g/kg, respectively). Nonsynaptic epileptiform activities (NEA) were induced by means of the zero-Ca2+ and high-K+ model using hippocampal slices and were recorded in the DG. The presence of NKCC1, KCC2, α1-Na+/K+-ATPase and GFAP immunoreactivity was analyzed. The results demonstrate that alcohol consumption changes NEA, and these changes are more prominent at the lower dosage. An increase in the DC shifts associated with epileptiform discharges was present with the low dose. This increase was correlated with the increment of NKCC1 expression. Confocal microscopy images indicate the NKCC1 increase was pronounced in the initial axonal segment of granule cells. The blockage of these cotransporters during NEA induction with bumetanide suppressed the DC shift increase and diminished all parameters of NEA that were quantified for all groups treated with ethanol. Therefore, the increase in NKCC1 expression and the effective activity of this cotransporter, which were observed in the treated groups, suggest that drugs that act for block NKCC1 represent promising strategies for diminishing the effects of alcohol damage on the brain.


Subject(s)
Alcohol-Related Disorders/metabolism , Epilepsy/metabolism , Hippocampus/drug effects , Sodium-Potassium-Exchanging ATPase/metabolism , Solute Carrier Family 12, Member 2/metabolism , Symporters/metabolism , Alcohol-Related Disorders/complications , Alcohol-Related Disorders/pathology , Animals , Bumetanide/pharmacology , Central Nervous System Depressants/toxicity , Dose-Response Relationship, Drug , Epilepsy/etiology , Epilepsy/pathology , Ethanol/toxicity , Hippocampus/metabolism , Hippocampus/pathology , Male , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Rats, Wistar , Receptors, GABA-A/metabolism , Sodium Potassium Chloride Symporter Inhibitors/pharmacology , Tissue Culture Techniques , K Cl- Cotransporters
SELECTION OF CITATIONS
SEARCH DETAIL
...