Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 275(Pt 1): 133588, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960246

ABSTRACT

The understanding of cancer immunity and antitumor factors generated by natural polysaccharides is not yet fully comprehended. Polysaccharides, like cashew gum (CG), can exhibit immunomodulatory action and may assist in the antitumor process and side effects relieve. This study aimed to determine the antitumor effect of CG alone or in combination with cyclophosphamide (CTX), and its interactions with immune cells, in a murine melanoma model, using the B16-F10 cell line. Tumor growth inhibition, hematological, histopathological, ELISA, flow cytometry, immunofluorescence, and qRT-PCR analyses were performed to elucidate the antitumor potential, involvement of immune cells, and potential toxic effects. CG showed significant tumor growth inhibition, reaching up to 42.9 % alone and 51.4 % in combination with CTX, with mild toxicity to organs. CG enhanced leukocyte count, even in the presence of CTX. Furthermore, CG influenced the activation of tumor-associated macrophages (TAM), characterized by an increase in Il4, as well as a reduction in Ifng, Il1b, Tgfb, and Il6 gene expression. Nevertheless, these effects did not compromise the antitumor activity of CG. In summary, the combination of CG with CTX is a promising approach for leukopenia, one of the most important side effects of cancer treatment and deserves further investigation.

2.
Int J Biol Macromol ; 274(Pt 2): 133048, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857734

ABSTRACT

Epiisopiloturine (EPI) is a compound found in jaborandi leaves with antiparasitic activity, which can be enhanced when incorporated into nanoparticles (NP). Cashew Gum (CG), modified by carboxymethylation, is used to produce polymeric nanomaterials with biological activity. In this study, we investigated the antimicrobial potential of carboxymethylated CG (CCG) NP containing EPI (NPCCGE) and without the alkaloid (NPCCG) against bacteria and parasites of the genus Leishmania. We conducted theoretical studies, carboxymethylated CG, synthesized NP by nanoprecipitation, characterized them, and tested them in vitro. Theoretical studies confirmed the stability of modified carbohydrates and showed that the EPI-4A30 complex had the best interaction energy (-8.47 kcal/mol). CCG was confirmed by FT-IR and presented DSabs of 0.23. NPCCG and NPCCGE had average sizes of 221.94 ± 144.086 nm and 247.36 ± 3.827 nm, respectively, with homogeneous distribution and uniform surfaces. No NP showed antibacterial activity or cytotoxicity to macrophages. NPCCGE demonstrated antileishmanial activity against L. amazonensis, both in promastigote forms (IC50 = 9.52 µg/mL, SI = 42.01) and axenic amastigote forms (EC50 = 6.6 µg/mL, SI = 60.60). The results suggest that nanostructuring EPI in CCG enhances its antileishmanial activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...