Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomacromolecules ; 24(9): 4180-4189, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37606546

ABSTRACT

Chitin nanocrystals (ChNCs) are unique to all other bio-derived nanomaterials in one aspect: the inherent presence of a nitrogen moiety. By tuning the chemical functionality of this nanomaterial, and thus its charge and hydrogen bonding capacity, one can heavily impact its macroscopic properties such as its rheological and self-assembly characteristics. In this study, two types of ChNCs are made using acid hydrolysis (AH-ChNCs) and oxidative (OX-ChNCs) pathways, unto which deacetylation using a solvent-free procedure is utilized to create chitosan nanocrystals (ChsNCs) of varying degree of deacetylation (DDA). These nanocrystals were then studied for their rheological behavior and liquid crystalline ordering. It was found that with both deacetylation and carboxylation of ChNCs, viscosity continually increased with increasing concentrations from 2 to 8 wt %, contrary to AH-ChNC dispersions in the same range. Interestingly, increasing the amine content of ChNCs was not proportional to the storage modulus, where a peak saturation of amines provided the most stiffness. Conversely, while the introduction of carboxylation increased the elastic modulus of OX-ChNCs by an order of magnitude from that of AH-ChNCs, it was decreased by increasing DDA. Deacetylation and carboxylation both inhibited the formation of a chiral nematic phase. Finally, these series of nanocrystals were incorporated into biodegradable pectin-alginate films as a physical reinforcement, which showed increased tensile strength and Young's modulus values for the films incorporated with ChsNCs. Overall, this study is the first to investigate how surface functionalization of chitin-derived nanocrystals can affect their rheological and liquid crystalline properties and how it augments pectin/alginate films as a physical reinforcement nanofiller.


Subject(s)
Chitosan , Nanoparticles , Chitin , Biopolymers , Pectins , Alginates , Amines
2.
Angew Chem Int Ed Engl ; 61(42): e202207206, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36006856

ABSTRACT

To unlock nature's potential for functional biomaterials, many efforts have been devoted to isolating the nanocrystalline domains within the supramolecular structure of polysaccharides. Yet, low reactivity and yield in aqueous systems along with excessive solvent usage hinders its development. In this report, the first solvent-free pathway to access carboxylated chitin and cellulose nanocrystals with excellent mass balance is described, relying on a new method coined high-humidity shaker aging (HHSA). The method involves a mild grinding of the polysaccharide with ammonium persulfate followed by an aging phase under high-humidity and on a shaker plate. Insights into the mechanism were uncovered, which highlighted the unique role of high humidity to afford a gradual uptake of water by the material up to deliquescence when the reaction is complete. This process was then validated for direct synthesis of nanocrystals from biomass sources including crab and soft wood pulp.


Subject(s)
Cellulose , Nanoparticles , Biocompatible Materials , Cellulose/chemistry , Chitin/chemistry , Humidity , Nanoparticles/chemistry , Polysaccharides/chemistry , Water
3.
ChemSusChem ; 15(7): e202102535, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35137539

ABSTRACT

Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.


Subject(s)
Cellulose , Lignin , Biomass , Cellulose/chemistry , Chitin , Lignin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...