Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Biomed Mater ; 14(3): 035011, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30802890

ABSTRACT

Nanomaterials can mimic properties of extracellular matrix molecules, promising great potential for scaffold composition in tissue engineering. In the present study, we investigated whether barium titanate nanoparticles (BT NP) combined with alginate polymer would provide a new cytocompatible three-dimensional (3D) scaffold to induce osteogenic stem cell differentiation. In vitro cytocompatibility and osteogenic differentiation potential were investigated using human mesenchymal stem cells (MSC). Firstly, we studied the cell viability and oxidative stress by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) thiazolyl blue tetrazolium bromide (MTT) and superoxide dismutase (SOD) assays. Overall, neither pure BT NP or BT NP/alginate 3D scaffold induced cytotoxicity. The scanning electron and atomic force microscopy revealed that BT NP/alginate 3D scaffold produced exhibited highly interconnected pores and surface nanotopography that were favorable for MSC differentiation. Von Kossa staining showed mineralization nodules and MSCs morphology changed from spindle to cuboid shape after 21 d. Finally, BMP-2 and ALP mRNA were significantly upregulated on cells grown into the BT NP/alginate 3D scaffold. Thus, the BT NP/alginate 3D scaffold showed an osteogenic differentiation induction potential, without the addition of osteogenic supplements. These results indicate that the BT NP/alginate 3D scaffold provides a cytocompatible and bioactive microenvironment for osteogenic human MSC differentiation.


Subject(s)
Alginates/chemistry , Barium Compounds/chemistry , Metal Nanoparticles/chemistry , Stem Cells/cytology , Tissue Scaffolds/chemistry , Titanium/chemistry , Cell Differentiation , Cell Proliferation , Cell Survival , Cells, Cultured , Humans , Materials Testing , Mesenchymal Stem Cells/cytology , Microscopy, Electron, Scanning , Osteogenesis , Oxidative Stress , Polymers/chemistry , Spectrum Analysis, Raman , Tissue Engineering/methods
2.
Front Microbiol ; 4: 412, 2013 Dec 31.
Article in English | MEDLINE | ID: mdl-24427156

ABSTRACT

The increasing number of antibiotic resistant bacteria motivates prospective research toward discovery of new antimicrobial active substances. There are, however, controversies concerning the cost-effectiveness of such research with regards to the description of new substances with novel cellular interactions, or description of new uses of existing substances to overcome resistance. Although examination of bacteria isolated from remote locations with limited exposure to humans has revealed an absence of antibiotic resistance genes, it is accepted that these genes were both abundant and diverse in ancient living organisms, as detected in DNA recovered from Pleistocene deposits (30,000 years ago). Indeed, even before the first clinical use of antibiotics more than 60 years ago, resistant organisms had been isolated. Bacteria can exhibit different strategies for resistance against antibiotics. New genetic information may lead to the modification of protein structure affecting the antibiotic carriage into the cell, enzymatic inactivation of drugs, or even modification of cellular structure interfering in the drug-bacteria interaction. There are still plenty of new genes out there in the environment that can be appropriated by putative pathogenic bacteria to resist antimicrobial agents. On the other hand, there are several natural compounds with antibiotic activity that may be used to oppose them. Antimicrobial peptides (AMPs) are molecules which are wide-spread in all forms of life, from multi-cellular organisms to bacterial cells used to interfere with microbial growth. Several AMPs have been shown to be effective against multi-drug resistant bacteria and have low propensity to resistance development, probably due to their unique mode of action, different from well-known antimicrobial drugs. These substances may interact in different ways with bacterial cell membrane, protein synthesis, protein modulation, and protein folding. The analysis of bacterial transcriptome may contribute to the understanding of microbial strategies under different environmental stresses and allows the understanding of their interaction with novel AMPs.

3.
Rev. bras. farmacogn ; 22(3): 497-501, May-June 2012. ilus, tab
Article in English | LILACS | ID: lil-624681

ABSTRACT

The aim of this work was to analyze terpene oil production and terpene synthases (TPS) gene expression from leaves at different developmental stages of different chemotypes of Lippia alba (Mill.) N.E. Br. ex Britton & P. Wilson, Verbenaceae. Hydro-distilled essential oil were used for chemical analysis and gene expression of three monoterpene synthase genes called LaTPS12, LaTPS23 and LaTPS25 were used for analyses of gene expression associated to oil production. The putative genes were associated to TPS-b gene class. Semi-quantitative PCR and quantitative PCR (qPCR) analysis were used to investigate the expression profile of those three putative genes in different leaf stages and different chemotypes. Additionally, total oil production and gene expression of putative TPS genes cloned from L. alba chemotype linalool were evaluated at different stages of leaf development. The expression level of those three genes was higher when the highest oil production was observed, mainly in young leaves at the fourth nodal segment for all evaluated chemotypes. Total oil production was higher at leaves that had unopened trichomes. We also observed that the 1mM of MeJA treatment increased the gene expression in all chemotypes after 24 h elicitation.

4.
Protein J ; 30(1): 32-8, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21210197

ABSTRACT

Heavy agricultural losses are closely related to attacks by insect-pests and phytopathogens such as bacteria and fungi. Among them, the fungus Botrytis cinerea can cause gray mold in more than 200 different species of plants, and is considered a challenging problem for agribusiness. Fungicides are commonly used to control this pathogen because they are fast-working and easy to apply. However, the continuous use of fungicides may promote the selection of resistant fungi and can also cause profound contamination in ecosystems. Aiming to find alternative strategies to solve these problems, several studies have focused on searching for plant proteins and peptides with antifungal activities (AFPs). With this in mind, this report shows the isolation and characterization of two novels antifungal proteins from flowers of rosemary pepper (Lippia sidoides Cham.) with 10 and 15 kDa. Isolation was performed by using an Octyl-Sepharose hydrophobic column. In vitro bioassays indicated that isolated proteins were able to inhibit B. cinerea development, but were not effective against all bacteria tested. Moreover, N-termini sequences indicate that both proteins showed sequence homology with NBS-LRR R proteins with a lower molecular mass, suggesting possible protein fragmentation. Data reported here could help in the development of biotechnological products for crop protection against phytopathogenic fungi in the near future.


Subject(s)
Botrytis , Fungicides, Industrial/chemistry , Fungicides, Industrial/isolation & purification , Lippia/chemistry , Peptides/isolation & purification , Plant Proteins/isolation & purification , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/chemistry , Adenosine Monophosphate/isolation & purification , Amino Acid Sequence , Animals , Brazil , Flowers/chemistry , Molecular Sequence Data , Peptides/chemistry , Peptides/genetics , Plant Proteins/chemistry , Plant Proteins/genetics , Thionucleotides/chemistry , Thionucleotides/isolation & purification
5.
Peptides ; 32(5): 868-74, 2011 May.
Article in English | MEDLINE | ID: mdl-20955745

ABSTRACT

Antifungal proteins and peptides, essential compounds for plant defense, have been isolated from several tissues of various plants. These proteins could be used as a natural alternative to control phytopathogenic fungi. In this report a heterodimeric antifungal protein named Pa-AFP1, showing higher identity with the 2S albumin family, was purified by using 70-100% ammonium sulfate saturation and further purification steps such as anionic exchange Q-Sepharose chromatography associated with HPLC reversed-phase C4 chromatography. Analysis by Tricine-SDS-PAGE revealed two peptidic molecular masses of approximately 4500 Da and 7000 Da, in the presence of ß-mercaptoethanol, while by removing the reducing agent a single protein with molecular mass of about 11,500 Da was obtained. Moreover, dimer mass was confirmed by MALDI-TOF analyses (11,569.76 Da). The antifungal protein, named Pa-AFP1, efficiently inhibited the growth of filamentous fungi Colletotrichum gloeosporioides, and was added to a short list of 2S albumins with antimicrobial properties. Otherwise, this same peptide showed no activity toward bacteria and yeasts. In summary, this compound could be used in the future to develop biotechnological products for the control of phytopathogenic fungi.


Subject(s)
Albumins/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Passiflora/chemistry , Peptides/chemistry , Peptides/pharmacology , Candida/drug effects , Candida albicans/drug effects , Candida glabrata/drug effects , Colletotrichum/drug effects , Cryptococcus neoformans/drug effects , Electrophoresis, Polyacrylamide Gel , Microbial Sensitivity Tests , Salmonella typhimurium/drug effects , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Staphylococcus aureus/drug effects
6.
Plant Signal Behav ; 4(12): 1111-3, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20514223

ABSTRACT

In plants, cell signaling connects the environmental input to the intracellular responses in plants. Exogenous signals play an important role in cell metabolism leading to growth and defense responses. Some of these stimuli induce anatomical and physiological modifications that are generally modulated by gene expression. SERK belongs to a small family of genes that code for a transmembrane protein involved in signal transduction and that have been strongly associated with somatic embryogenesis and apomixis in a number of plant species. Recent studies corroborate its role in somatic embryogenesis and suggest a broader range of functions in plant response to biotic and abiotic stimuli. This mini-review aims to present new data on SERK and discuss its involvement in plant development as well as in response to environmental stress.


Subject(s)
Plant Proteins/metabolism , Plants/enzymology , Protein Kinases/metabolism , Stress, Physiological , Gene Expression Regulation, Plant , Plant Proteins/genetics , Protein Kinases/genetics , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...