Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 264: 116034, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38103541

ABSTRACT

Drug resistance, evasion of cell death and metastasis are factors that contribute to the low cure rate and disease-free survival in osteosarcomas (OS). In this study, we demonstrated that a new class of oxime-containing organometallic complexes called Pd-BPO (O3) and Pd-BMO (O4) are more cytotoxic than cisplatin (CDDP) for SaOS-2 and U2OS cells using the MTT assay. Annexin-FITC/7-AAD staining demonstrated a greater potential for palladium-oxime complexes to induce death in SaOS-2 cells than CDDP, an event confirmed using the pan-caspase inhibitor Z-VAD-FMK. Compared to CDDP, only palladium-oxime complexes eradicated the clonogenicity of SaOS-2 cells after 7 days of treatment. The involvement of the lysosome-mitochondria axis in the cell death-inducing properties of the complexes was also evaluated. Using LysoTracker Red to label the acidic organelles of SaOS-2 cells treated with the O3 and O4 complexes, a decrease in the fluorescence intensity of this probe was observed in relation to CDDP and the control. Lysosomal membrane permeabilization (LMP) was also induced by the O3 and O4 complexes in an assay using acridine orange (A/O). The greater efficiency of the complexes in depolarizing the mitochondrial membrane compared to SaOS-2 cells treated with CDDP was also observed using TMRE (tetramethyl rhodamine, ethyl ester). For in vivo studies, C. elegans was used and demonstrated that both complexes reduce body bends and pharyngeal pumping after 24 h of treatment to the same extent as CDDP. We conclude that both palladium-oxime complexes are more effective than CDDP in inducing tumor cell death. The toxicity of these complexes to C. elegans was like that induced by CDDP. These results encourage preclinical studies aimed at developing more effective drugs for the treatment of osteosarcoma (OS). Furthermore, we propose palladium-oxime complexes as a new class of antineoplastic agents.


Subject(s)
Antineoplastic Agents , Bone Neoplasms , Osteosarcoma , Animals , Humans , Cisplatin/pharmacology , Palladium/pharmacology , Caenorhabditis elegans , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Osteosarcoma/pathology , Bone Neoplasms/pathology , Cell Line, Tumor
2.
Chin J Integr Med ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38040876

ABSTRACT

OBJECTIVE: To evaluate the chemical composition and effects of Artemisia vulgaris (AV) hydroalcoholic extract (HEAV) on breast cancer cells (MCF-7 and SKBR-3), chronic myeloid leukemia (K562) and NIH/3T3 fibroblasts. METHODS: Phytochemical analysis of HEAV was done by high-performance liquid chromatography-mass (HPLC) spectrometry. Viability and cell death studies were performed using trypan blue and Annexin/FITC-7AAD, respectively. Ferrostatin-1 (Fer-1) and necrostatin-1 (Nec-1) were used to assess the mode of HEAV-induced cell death and acetoxymethylester (BAPTA-AM) was used to verify the involvement of cytosolic calcium in this event. Cytosolic calcium measurements were made using Fura-2-AM. RESULTS: HEAV decreased the viability of MCF-7, SKBR-3 and K562 cells (P<0.05). The viability of HEAV-treated K562 cells was reduced compared to HEAV-exposed fibroblasts (P<0.05). Treatment of K562 cells with HEAV induced cell death primarily by late apoptosis and necrosis in assays using annexin V-FITC/7-AAD (P<0.05). The use of Nec-1 and Fer-1 increased the viability of K562 cells treated with HEAV relative to cells exposed to HEAV alone (P<0.01). HEAV-induced Ca2+ release mainly from lysosomes in K562 cells (P<0.01). Furthermore, BAPTA-AM, an intracellular Ca2+ chelator, decreased the number of non-viable cells treated with HEAV (P<0.05). CONCLUSIONS: HEAV is cytotoxic and activates several modalities of cell death, which are partially dependent on lysosomal release of Ca2+. These effects may be related to artemisinin and caffeoylquinic acids, the main compounds identified in HEAV.

SELECTION OF CITATIONS
SEARCH DETAIL
...