Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 29(4): 043106, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31042937

ABSTRACT

Chimera states are spatiotemporal patterns in which coherence and incoherence coexist. We observe the coexistence of synchronous (coherent) and desynchronous (incoherent) domains in a neuronal network. The network is composed of coupled adaptive exponential integrate-and-fire neurons that are connected by means of chemical synapses. In our neuronal network, the chimera states exhibit spatial structures both with spike and burst activities. Furthermore, those desynchronized domains not only have either spike or burst activity, but we show that the structures switch between spikes and bursts as the time evolves. Moreover, we verify the existence of multicluster chimera states.

2.
Chaos ; 29(4): 043125, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31042961

ABSTRACT

In Hamiltonian systems, depending on the control parameter, orbits can stay for very long times around islands, the so-called stickiness effect caused by a temporary trapping mechanism. Different methods have been used to identify sticky orbits, such as recurrence analysis, recurrence time statistics, and finite-time Lyapunov exponent. However, these methods require a large number of map iterations and to know the island positions in the phase space. Here, we show how to use the small divergence of bursts in the rotation number calculation as a tool to identify stickiness without knowing the island positions. This new procedure is applied to the standard map, a map that has been used to describe the dynamic behavior of several nonlinear systems. Moreover, our procedure uses a small number of map iterations and is proper to identify the presence of stickiness phenomenon for different values of the control parameter.

3.
Chaos ; 28(8): 085717, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30180633

ABSTRACT

We study the standard nontwist map that describes the dynamic behaviour of magnetic field lines near a local minimum or maximum of frequency. The standard nontwist map has a shearless invariant curve that acts like a barrier in phase space. Critical parameters for the breakup of the shearless curve have been determined by procedures based on the indicator points and bifurcations of periodical orbits, a methodology that demands high computational cost. To determine the breakup critical parameters, we propose a new simpler and general procedure based on the determinism analysis performed on the recurrence plot of orbits near the critical transition. We also show that the coexistence of islands and chaotic sea in phase space can be analysed by using the recurrence plot. In particular, the measurement of determinism from the recurrence plot provides us with a simple procedure to distinguish periodic from chaotic structures in the parameter space. We identify an invariant shearless breakup scenario, and we also show that recurrence plots are useful tools to determine the presence of periodic orbit collisions and bifurcation curves.

SELECTION OF CITATIONS
SEARCH DETAIL
...