Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Cell ; 35(1): 81-94.e7, 2019 01 14.
Article in English | MEDLINE | ID: mdl-30612940

ABSTRACT

Adenosine deaminase associated with RNA1 (ADAR1) deregulation contributes to therapeutic resistance in many malignancies. Here we show that ADAR1-induced hyper-editing in normal human hematopoietic progenitors impairs miR-26a maturation, which represses CDKN1A expression indirectly via EZH2, thereby accelerating cell-cycle transit. However, in blast crisis chronic myeloid leukemia progenitors, loss of EZH2 expression and increased CDKN1A oppose cell-cycle transit. Moreover, A-to-I editing of both the MDM2 regulatory microRNA and its binding site within the 3' UTR region stabilizes MDM2 transcripts, thereby enhancing blast crisis progenitor propagation. These data reveal a dual mechanism governing malignant transformation of progenitors that is predicated on hyper-editing of cell-cycle-regulatory miRNAs and the 3' UTR binding site of tumor suppressor miRNAs.


Subject(s)
Adenosine Deaminase/genetics , Blast Crisis/genetics , Cyclin-Dependent Kinase Inhibitor p21/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , MicroRNAs/genetics , Proto-Oncogene Proteins c-mdm2/genetics , RNA-Binding Proteins/genetics , 3' Untranslated Regions , Animals , Cell Cycle , Female , Gene Editing , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , HEK293 Cells , Humans , K562 Cells , Male , Mice , Neoplasm Transplantation
2.
PLoS One ; 8(7): e68300, 2013.
Article in English | MEDLINE | ID: mdl-23869214

ABSTRACT

Human genetic association studies have shown gene variants in the α5 subunit of the neuronal nicotinic receptor (nAChR) influence both ethanol and nicotine dependence. The α5 subunit is an accessory subunit that facilitates α4* nAChRs assembly in vitro. However, it is unknown whether this occurs in the brain, as there are few research tools to adequately address this question. As the α4*-containing nAChRs are highly expressed in the ventral tegmental area (VTA) we assessed the molecular, functional and pharmacological roles of α5 in α4*-containing nAChRs in the VTA. We utilized transgenic mice α5+/+(α4YFP) and α5-/-(α4YFP) that allow the direct visualization and measurement of α4-YFP expression and the effect of the presence (α5+/+) and absence of α5 (-/-) subunit, as the antibodies for detecting the α4* subunits of the nAChR are not specific. We performed voltage clamp electrophysiological experiments to study baseline nicotinic currents in VTA dopaminergic neurons. We show that in the presence of the α5 subunit, the overall expression of α4 subunit is increased significantly by 60% in the VTA. Furthermore, the α5 subunit strengthens baseline nAChR currents, suggesting the increased expression of α4* nAChRs to be likely on the cell surface. While the presence of the α5 subunit blunts the desensitization of nAChRs following nicotine exposure, it does not alter the amount of ethanol potentiation of VTA dopaminergic neurons. Our data demonstrates a major regulatory role for the α5 subunit in both the maintenance of α4*-containing nAChRs expression and in modulating nicotinic currents in VTA dopaminergic neurons. Additionally, the α5α4* nAChR in VTA dopaminergic neurons regulates the effect of nicotine but not ethanol on currents. Together, the data suggest that the α5 subunit is critical for controlling the expression and functional role of a population of α4*-containing nAChRs in the VTA.


Subject(s)
Gene Expression Regulation , Receptors, Nicotinic/physiology , Ventral Tegmental Area/metabolism , Acetylcholine/pharmacology , Animals , Bacterial Proteins/analysis , Gene Knock-In Techniques , In Vitro Techniques , Luminescent Proteins/analysis , Male , Mice , Mice, Transgenic , Nicotine/pharmacology , Patch-Clamp Techniques , Receptors, Nicotinic/analysis , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism
3.
Psychol Sci ; 24(6): 966-73, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23579320

ABSTRACT

The meaning-maintenance model posits that any violation of expectations leads to an affective experience that motivates compensatory affirmation. We explore whether the neural mechanism that responds to meaning threats can be inhibited by acetaminophen, in the same way that acetaminophen inhibits physical pain or the distress caused by social rejection. In two studies, participants received either acetaminophen or a placebo and were provided with either an unsettling experience or a control experience. In Study 1, participants wrote about either their death or a control topic. In Study 2, participants watched either a surrealist film clip or a control film clip. In both studies, participants in the meaning-threat condition who had taken a placebo showed typical compensatory affirmations by becoming more punitive toward lawbreakers, whereas those who had taken acetaminophen, and those in the control conditions, did not.


Subject(s)
Acetaminophen/pharmacology , Emotions/drug effects , Social Behavior , Adult , Death , Fear/physiology , Female , Humans , Male , Motion Pictures , Pain/psychology , Placebo Effect , Young Adult
4.
Alcohol Clin Exp Res ; 37(4): 655-62, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23164049

ABSTRACT

BACKGROUND: Alcohol use disorders (AUDs) are a major public health problem, and the few treatment options available to those seeking treatment offer only modest success rates. There remains a need to identify novel targets for the treatment of AUDs. The neuronal nicotinic acetylcholine receptors (nAChRs) represent a potential therapeutic target in the brain, as recent human genetic studies have implicated gene variants in the α5 nAChR subunit as high risk factors for developing alcohol dependence. METHODS: Here, we evaluate the role of the α5* nAChR for ethanol (EtOH)-mediated behaviors using male α5+/+ and α5-/- transgenic mice. We characterized the effect of hypnotic doses of EtOH and investigated drinking behavior using an adapted drinking-in-the-dark (DID) paradigm that has been shown to induce high EtOH consumption in mice. RESULTS: We found the α5 subunit to be important in mediating the sedative effects of EtOH. The α5-/- mice showed slower recovery from EtOH-induced sleep, as measured by loss of righting reflex. Additionally, the α5-/- mice showed enhanced impairment to EtOH-induced ataxia. We found the initial sensitivity to EtOH and EtOH metabolism to be similar in both α5+/+ and α5-/- mice. Hence, the enhanced sedation is likely due to a difference in the acute tolerance of EtOH in α5-/- mice. However, the α5 subunit did not play a role in EtOH consumption for EtOH concentrations ranging from 5 to 30% using the DID paradigm. Additionally, varenicline was effective in reducing EtOH intake in α5-/- mice. CONCLUSIONS: Together, our data suggest that the α5 nAChR subunit is important for the sedative effects of EtOH but does not play a role in EtOH consumption in male mice. Varenicline can be a treatment option even when there is loss of function of the α5 nAChR subunit.


Subject(s)
Alcohol Drinking/genetics , Ethanol/administration & dosage , Hypnotics and Sedatives/administration & dosage , Protein Subunits/physiology , Receptors, Nicotinic/physiology , Alcohol Drinking/physiopathology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Receptors, Nicotinic/deficiency , Reflex, Righting/drug effects , Reflex, Righting/physiology , Self Administration
5.
J Neurosci ; 32(13): 4540-52, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22457501

ABSTRACT

Binge-like patterns of excessive drinking during young adulthood increase the propensity for alcohol use disorders (AUDs) later in adult life; however, the mechanisms that drive this are not completely understood. Previous studies showed that the δ-opioid peptide receptor (DOP-R) is dynamically regulated by exposure to ethanol and that the DOP-R plays a role in ethanol-mediated behaviors. The aim of this study was to determine the role of the DOP-R in high ethanol consumption from young adulthood through to late adulthood by measuring DOP-R-mediated [(35)S]GTPγS binding in brain membranes and DOP-R-mediated analgesia using a rat model of high ethanol consumption in Long Evans rats. We show that DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia changes during development, being highest during early adulthood and reduced in late adulthood. Intermittent access to ethanol but not continuous ethanol or water from young adulthood leads to an increase in DOP-R activity in the dorsal striatum and DOP-R-mediated analgesia into late adulthood. Multiple microinfusions of naltrindole into the dorsal striatum or multiple systemic administration of naltrindole reduces ethanol consumption, and following termination of treatment, DOP-R activity in the dorsal striatum is attenuated. These findings suggest that DOP-R activity in the dorsal striatum plays a role in high levels of ethanol consumption and suggest that targeting the DOP-R is an alternative strategy for the treatment of AUDs.


Subject(s)
Alcohol Drinking/physiopathology , Corpus Striatum/physiology , Radioligand Assay/psychology , Receptors, Opioid, delta/physiology , Age Factors , Alcohol Drinking/drug therapy , Alcohol Drinking/metabolism , Analgesia/methods , Analgesia/psychology , Animals , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Drug Synergism , Ethanol/pharmacology , Guanosine 5'-O-(3-Thiotriphosphate) , Male , Microinjections , Naltrexone/administration & dosage , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Quinolines/pharmacology , Radioligand Assay/methods , Rats , Rats, Long-Evans , Receptors, Opioid, delta/metabolism , Sulfur Radioisotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...