Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 3: 124, 2012.
Article in English | MEDLINE | ID: mdl-23015801

ABSTRACT

We aimed to identify the region harboring a putative candidate gene associated with hippocampal abnormalities (HAb) in a family with mesial temporal lobe epilepsy (MTLE). Genome-wide scan was performed in one large kindred with MTLE using a total of 332 microsatellite markers at ∼12 cM intervals. An additional 13 markers were genotyped in the candidate region. Phenotypic classes were defined according to the presence of hippocampal atrophy and/or hyperintense hippocampal T2 signal detected on magnetic resonance imaging. We identified a significant positive LOD score on chromosome 18p11.31 with a Z(max) of 3.12 at D18S452. Multipoint LOD scores and haplotype analyses localized the candidate locus within a 6-cM interval flanked by D18S976 and D18S967. We present here evidence that HAb, which were previously related mainly to environmental risk factors, may be influenced by genetic predisposition. This finding may have major impact in the study of the mechanisms underlying abnormalities in mesial temporal lobe structures and their relationship with MTLE.

2.
Genomics ; 91(6): 544-7, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18378114

ABSTRACT

Genetic linkage studies using whole genome scans are useful approaches for identifying genes related to human diseases. In general, these studies require genotyping of a large number of markers, which are used in statistical analysis. Recent technology has allowed easy genotyping of a large number of markers in less time; therefore, interface programs are required for manipulation of these large data sets. We present a new algorithm, which processes input data in LINKAGE format from data analyzed by automated genotyping systems. The algorithm was implemented in PERL script and R environment. Validation was performed with genotyped data from 127 individuals and 720 microsatellite markers of two whole genome scans. Our results showed a significant decrease in data processing time. In addition, this algorithm provides unbiased allele frequency estimation used for linkage analysis. LINKGEN is a freely available online tool and allows easier, faster, and reliable manipulation of large genotyping data sets.


Subject(s)
Algorithms , Genetic Linkage , Sequence Analysis, DNA/methods , Software , Genome, Human , Humans , Microsatellite Repeats
3.
Am J Med Genet A ; 146A(9): 1151-7, 2008 May 01.
Article in English | MEDLINE | ID: mdl-18384144

ABSTRACT

Polymicrogyria (PMG) is characterized by an excessive number of small and prominent brain gyri, separated by shallow sulci. Bilateral perisylvian polymicrogyria (BPP) is the most common form of PMG. Clinical signs include pseudobulbar paresis, mental retardation, and epilepsy. Familial forms of BPP have been described and a candidate locus was previously mapped to chromosome Xq28, distal do marker DXS8103. The objective of this study was to perform linkage analysis in one family segregating BPP. A total of 15 individuals, including 8 affected patients with BPP were evaluated. Family members were examined by a neurologist and subjected to magnetic resonance imaging scans. Individuals were genotyped for 18 microsatellite markers, flanking a 42.3 cM interval on ch Xq27-q28. Two-point and multipoint linkage analysis was performed using the LINKAGE package and haplotype reconstruction was performed by GENEHUNTER software. Our results showed a wide spectrum of clinical manifestations in affected individuals with BPP, ranging from normal to mild neurological abnormalities. Two-point linkage analysis yield a Zmax = 2.06 at theta = 0.00 for markers DXS1205 and DXS1227. Multipoint lod-scores indicate a candidate interval of 13 cM between markers DSXS1205 and DXS8043, on ch Xq27.2-Xq27.3. These results point to a new locus for BPP in a more centromeric location than previously reported.


Subject(s)
Chromosomes, Human, X/genetics , Malformations of Cortical Development/genetics , Adult , Cerebral Cortex/abnormalities , Child , Chromosome Mapping , Female , Genotype , Haplotypes , Humans , Lod Score , Magnetic Resonance Imaging , Male , Malformations of Cortical Development/pathology , Malformations of Cortical Development/psychology , Microsatellite Repeats , Pedigree
4.
Arch Neurol ; 60(11): 1546-51, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14623726

ABSTRACT

BACKGROUND: Two forms of familial temporal lobe epilepsy (FTLE) have been described: mesial FTLE and FTLE with auditory auras. The gene responsible for mesial FTLE has not been mapped yet, whereas mutations in the LGI1 (leucine-rich, glioma-inactivated 1) gene, localized on chromosome 10q, have been found in FTLE with auditory auras. OBJECTIVE: To describe magnetic resonance imaging (MRI) findings in patients with FTLE with auditory auras. DESIGN AND METHODS: We performed detailed clinical and molecular studies as well as MRI evaluation (including volumetry) in all available individuals from one family, segregating FTLE from auditory auras. RESULTS: We evaluated 18 of 23 possibly affected individuals, and 13 patients reported auditory auras. In one patient, auditory auras were associated with déjà vu; in one patient, with ictal aphasia; and in 2 patients, with visual misperception. Most patients were not taking medication at the time, although all of them reported sporadic auras. Two-point lod scores were positive for 7 genotyped markers on chromosome 10q, and a Zmax of 6.35 was achieved with marker D10S185 at a recombination fraction of 0.0. Nucleotide sequence analysis of the LGI1 gene showed a point mutation, VIIIS7(-2)A-G, in all affected individuals. Magnetic resonance imaging was performed in 22 individuals (7 asymptomatic, 4 of them carriers of the affected haplotype on chromosome 10q and the VIIIS7[-2]A-G mutation). Lateral temporal lobe malformations were identified by visual analysis in 10 individuals, 2 of them with global enlargement demonstrated by volumetry. Mildly reduced hippocampi were observed in 4 individuals. CONCLUSIONS: In this family with FTLE with auditory auras, we found developmental abnormalities in the lateral cortex of the temporal lobes in 53% of the affected individuals. In contrast with mesial FTLE, none of the affected individuals had MRI evidence of hippocampal sclerosis.


Subject(s)
Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/genetics , Temporal Lobe/pathology , Adolescent , Adult , Child , Female , Haplotypes , Humans , Magnetic Resonance Imaging , Male , Pedigree , Radiography , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...