Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 6998, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36384915

ABSTRACT

Integrated photonic circuits are key components for photonic quantum technologies and for the implementation of chip-based quantum devices. Future applications demand flexible architectures to overcome common limitations of many current devices, for instance the lack of tuneabilty or built-in quantum light sources. Here, we report on a dynamically reconfigurable integrated photonic circuit comprising integrated quantum dots (QDs), a Mach-Zehnder interferometer (MZI) and surface acoustic wave (SAW) transducers directly fabricated on a monolithic semiconductor platform. We demonstrate on-chip single photon generation by the QD and its sub-nanosecond dynamic on-chip control. Two independently applied SAWs piezo-optomechanically rotate the single photon in the MZI or spectrally modulate the QD emission wavelength. In the MZI, SAWs imprint a time-dependent optical phase and modulate the qubit rotation to the output superposition state. This enables dynamic single photon routing with frequencies exceeding one gigahertz. Finally, the combination of the dynamic single photon control and spectral tuning of the QD realizes wavelength multiplexing of the input photon state and demultiplexing it at the output. Our approach is scalable to multi-component integrated quantum photonic circuits and is compatible with hybrid photonic architectures and other key components for instance photonic resonators or on-chip detectors.

2.
Nat Commun ; 13(1): 5939, 2022 Oct 08.
Article in English | MEDLINE | ID: mdl-36209142

ABSTRACT

Wave refraction at an interface between different materials is a basic yet fundamental phenomenon, transversal to several scientific realms - electromagnetism, gas and fluid acoustics, solid mechanics, and possibly also matter waves. Under specific circumstances, mostly enabled by structuration below the wavelength scale, i.e., through the metamaterial approach, waves undergo negative refraction, eventually enabling superlensing and transformation optics. However, presently known negative refraction systems are symmetric, in that they cannot distinguish between positive and negative angles of incidence. Exploiting a metamaterial with an asymmetric unit cell, we demonstrate that the aforementioned symmetry can be broken, ultimately relying on the specific shape of the Bloch mode isofrequency curves. Our study specialized upon a mechanical metamaterial operating at GHz frequency, which is by itself a building block for advanced technologies such as chip-scale hybrid optomechanical and electromechanical devices. However, the phenomenon is based on general wave theory concepts, and it applies to any frequency and time scale for any kind of linear waves, provided that a suitable shaping of the isofrequency contours is implemented.

3.
Nat Commun ; 13(1): 5384, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36104320

ABSTRACT

The control of "flying" (or moving) spin qubits is an important functionality for the manipulation and exchange of quantum information between remote locations on a chip. Typically, gates based on electric or magnetic fields provide the necessary perturbation for their control either globally or at well-defined locations. Here, we demonstrate the dynamic control of moving electron spins via contactless gates that move together with the spins. The concept is realized using electron spins trapped and transported by moving potential dots defined by a surface acoustic wave (SAW). The SAW strain at the electron trapping site, which is set by the SAW amplitude, acts as a contactless, tunable gate that controls the precession frequency of the flying spins via the spin-orbit interaction. We show that the degree of precession control in moving dots exceeds previously reported results for unconstrained transport by an order of magnitude and is well accounted for by a theoretical model for the strain contribution to the spin-orbit interaction. This flying spin gate permits the realization of an acoustically driven optical polarization modulator based on electron spin transport, a key element for on-chip spin information processing with a photonic interface.

4.
Sci Data ; 9(1): 487, 2022 08 10.
Article in English | MEDLINE | ID: mdl-35948551

ABSTRACT

Chest radiographs allow for the meticulous examination of a patient's chest but demands specialized training for proper interpretation. Automated analysis of medical imaging has become increasingly accessible with the advent of machine learning (ML) algorithms. Large labeled datasets are key elements for training and validation of these ML solutions. In this paper we describe the Brazilian labeled chest x-ray dataset, BRAX: an automatically labeled dataset designed to assist researchers in the validation of ML models. The dataset contains 24,959 chest radiography studies from patients presenting to a large general Brazilian hospital. A total of 40,967 images are available in the BRAX dataset. All images have been verified by trained radiologists and de-identified to protect patient privacy. Fourteen labels were derived from free-text radiology reports written in Brazilian Portuguese using Natural Language Processing.


Subject(s)
Algorithms , Natural Language Processing , Radiography, Thoracic , Brazil , Humans , X-Rays
5.
Sci Adv ; 7(44): eabj5030, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34714672

ABSTRACT

Spin centers are promising qubits for quantum technologies. Here, we show that the acoustic manipulation of spin qubits in their electronic excited state provides an approach for coherent spin control inaccessible so far. We demonstrate a giant interaction between the strain field of a surface acoustic wave (SAW) and the excited-state spin of silicon vacancies in silicon carbide, which is about two orders of magnitude stronger than in the ground state. The simultaneous spin driving in the ground and excited states with the same SAW leads to the trapping of the spin along a direction given by the frequency detuning from the corresponding spin resonances. The coherence of the spin-trapped states becomes only limited by relaxation processes intrinsic to the ground state. The coherent acoustic manipulation of spins in the ground and excited state provides new opportunities for efficient on-chip quantum information protocols and coherent sensing.

6.
Front Vet Sci ; 8: 686425, 2021.
Article in English | MEDLINE | ID: mdl-34422943

ABSTRACT

Continuous flow enteral fluid therapy with isotonic and hypotonic enteral electrolyte solutions are as safe and effective as intravenous fluid therapy. The aim of this study was to carry out a comparative assessment between continuous flow enteral and intravenous (IV) fluid therapy in adult experimentally dehydrated horses. Six experimentally dehydrated adult mares were used in a study carried out in a 6 × 3 crossover design, which each animal received three different treatments (isotonic enteral fluid therapy-EsISO, hypotonic enteral fluid therapy-EsHYPO and intravenous fluid therapy with Lactate Ringer Solution-LR IV, all in continuous flow). Solutions were administered at a rate of 15 mL-1.kg-1.h-1 for 8 h, after 36 h of water and food deprivation. Serum and urinary biochemical assessment; urinary volume, pH and specific gravity; and blood gas analysis were measured at -36, 0, 2, 4, 6, and 8 h. The dehydration period (DP) caused discrete hydroelectrolytic and acid base imbalances. The EsISO, EsHYPO and LR IV increased blood volume. Enteral solutions restored the imbalances yielded by the DP and all treatments increased urine volume. Also, the EsHYPO and LR IV showed no effects in acid base balance, while EsISO showed slightly acidifying effect. The present study certifies the efficacy and safety of isotonic and hypotonic continuous flow enteral fluid therapy in comparison to IV fluid therapy in dehydrated horses.

7.
ACS Nano ; 15(9): 15371-15380, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-34450007

ABSTRACT

The Stark effect is one of the most efficient mechanisms to manipulate many-body states in nanostructured systems. In mono- and few-layer transition metal dichalcogenides, it has been successfully induced by optical and electric field means. Here, we tune the optical emission energies and dissociate excitonic states in MoSe2 monolayers employing the 220 MHz in-plane piezoelectric field carried by surface acoustic waves. We transfer the monolayers to high dielectric constant piezoelectric substrates, where the neutral exciton binding energy is reduced, allowing us to efficiently quench (above 90%) and red-shift the excitonic optical emissions. A model for the acoustically induced Stark effect yields neutral exciton and trion in-plane polarizabilities of 530 and 630 × 10-5 meV/(kV/cm)2, respectively, which are considerably larger than those reported for monolayers encapsulated in hexagonal boron nitride. Large in-plane polarizabilities are an attractive ingredient to manipulate and modulate multiexciton interactions in two-dimensional semiconductor nanostructures for optoelectronic applications.

8.
Nano Lett ; 20(1): 402-409, 2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31790600

ABSTRACT

We experimentally demonstrate that the Raman-active optical phonon modes of single-layer graphene can be modulated by the dynamic local strain created by surface acoustic waves (SAWs). In particular, the dynamic strain field of the SAW is shown to induce a Raman scattering intensity variation as large as 15% and a phonon frequency shift of up to 10 cm-1 for the G band, for instance, for an effective hydrostatic strain of 0.24% generated in single-layer graphene atop a LiNbO3 piezoelectric substrate with a SAW resonator operating at a frequency of ∼400 MHz. Thus, we demonstrate that SAWs are powerful tools for modulating the optical and vibrational properties of supported graphene by means of the high-frequency localized deformations tailored by the acoustic transducers, which can also be extended to other 2D systems.

9.
Nat Commun ; 10(1): 4557, 2019 10 08.
Article in English | MEDLINE | ID: mdl-31594936

ABSTRACT

Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots. This transfer mechanism makes SAW technologies a promising candidate to convey quantum information through a circuit of quantum logic gates. Here we present two essential building blocks of such a SAW-driven quantum circuit. First, we implement a directional coupler allowing to partition a flying electron arbitrarily into two paths of transportation. Second, we demonstrate a triggered single-electron source enabling synchronisation of the SAW-driven sending process. Exceeding a single-shot transfer efficiency of 99%, we show that a SAW-driven integrated circuit is feasible with single electrons on a large scale. Our results pave the way to perform quantum logic operations with flying electron qubits.

10.
Nat Commun ; 8(1): 407, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28864819

ABSTRACT

The magnetoelastic effect-the change of magnetic properties caused by the elastic deformation of a magnetic material-has been proposed as an alternative approach to magnetic fields for the low-power control of magnetization states of nanoelements since it avoids charge currents, which entail ohmic losses. Here, we have studied the effect of dynamic strain accompanying a surface acoustic wave on magnetic nanostructures in thermal equilibrium. We have developed an experimental technique based on stroboscopic X-ray microscopy that provides a pathway to the quantitative study of strain waves and magnetization at the nanoscale. We have simultaneously imaged the evolution of both strain and magnetization dynamics of nanostructures at the picosecond time scale and found that magnetization modes have a delayed response to the strain modes, adjustable by the magnetic domain configuration. Our results provide fundamental insight into magnetoelastic coupling in nanostructures and have implications for the design of strain-controlled magnetostrictive nano-devices.Understanding the effects of local dynamic strain on magnetization may help the development of magnetic devices. Foerster et al. demonstrate stroboscopic imaging that allows the observation of both strain and magnetization dynamics in nickel when surface acoustic waves are driven in the substrate.


Subject(s)
Magnetics , Microscopy, Electron/methods , Nanostructures/chemistry , Sound , Circular Dichroism , Nickel , X-Rays
11.
Nanoscale Res Lett ; 7(1): 247, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22583747

ABSTRACT

: The oscillating piezoelectric field of a surface acoustic wave (SAW) is employed to transport photoexcited electrons and holes in GaAs nanowires deposited on a SAW delay line on a LiNbO3 crystal. The carriers generated in the nanowire by a focused light spot are acoustically transferred to a second location where they recombine. We show that the recombination of the transported carriers occurs in a zinc blende section on top of the predominant wurtzite nanowire. This allows contactless control of the linear polarized emission by SAWs which is governed by the crystal structure. Additional polarization-resolved photoluminescence measurements were performed to investigate spin conservation during transport.

12.
Phys Rev Lett ; 106(12): 126402, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21517333

ABSTRACT

In this Letter we suggest a method to observe remote interactions of spatially separated dipolar quantum fluids, and in particular, of dipolar excitons in GaAs bilayer based devices. The method utilizes the static electric dipole moment of trapped dipolar fluids to induce a local potential change on spatially separated test dipoles. We show that such an interaction can be used for model-independent, objective fluid density measurements, an outstanding problem in this field of research, as well as for interfluid exciton flow control and trapping. For a demonstration of the effects on realistic devices, we use a full two-dimensional hydrodynamical model.

13.
Nat Mater ; 4(8): 585-8, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16041380

ABSTRACT

Spin transport and manipulation in semiconductors have been studied intensively with the ultimate goal of realizing spintronic devices. Previous work in GaAs has focused on controlling the carrier density, crystallographic orientation and dimensionality to limit the electron spin decoherence and allow transport over long distances. Here, we introduce a new method for the coherent transport of spin-polarized electronic wave packets using dynamic quantum dots (DQDs) created by the piezoelectric field of coherent acoustic phonons. Photogenerated spin carriers transported by the DQDs in undoped GaAs (001) quantum wells exhibit a spin coherence length exceeding 100 microm, which is attributed to the simultaneous control of the carrier density and the dimensionality by the DQDs during transport. In the absence of an applied magnetic field, we observe the precession of the electron spin induced by the internal magnetic field associated with the spin splitting of the conduction band (Dresselhaus term). The coherent manipulation of the precession frequency is also achieved by applying an external magnetic field.

SELECTION OF CITATIONS
SEARCH DETAIL
...