Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 15(7)2023 06 30.
Article in English | MEDLINE | ID: mdl-37515173

ABSTRACT

Successful SARS-CoV-2 inactivation allows its safe use in Biosafety Level 2 facilities, and the use of the whole viral particle helps in the development of analytical methods and a more reliable immune response, contributing to the development and improvement of in vitro and in vivo assays. In order to obtain a functional product, we evaluated several inactivation protocols and observed that 0.03% beta-propiolactone for 24 h was the best condition tested, as it promoted SARS-CoV-2 inactivation above 99.99% and no cytopathic effect was visualized after five serial passages. Moreover, RT-qPCR and transmission electron microscopy revealed that RNA quantification and viral structure integrity were preserved. The antigenicity of inactivated SARS-CoV-2 was confirmed by ELISA using different Spike-neutralizing monoclonal antibodies. K18-hACE2 mice immunized with inactivated SARS-CoV-2, formulated in AddaS03TM, presented high neutralizing antibody titers, no significant weight loss, and longer survival than controls from a lethal challenge, despite RNA detection in the oropharyngeal swab, lung, and brain. This work emphasizes the importance of using different techniques to confirm viral inactivation and avoid potentially disastrous contamination. We believe that an efficiently inactivated product can be used in several applications, including the development and improvement of molecular diagnostic kits, as an antigen for antibody production as well as a control for non-clinical trials.


Subject(s)
COVID-19 , SARS-CoV-2 , Mice , Animals , Antibody Formation , COVID-19/prevention & control , Antibodies, Viral , Immunization , Enzyme-Linked Immunosorbent Assay , Antibodies, Neutralizing
2.
Clin Immunol ; 251: 109321, 2023 06.
Article in English | MEDLINE | ID: mdl-37019421

ABSTRACT

This study described a soluble mediator storm in acute Yellow Fever/YF infection along the kinetics timeline towards convalescent disease. The analyses of the YF Viral RNAnemia, chemokines, cytokines, and growth factors were performed in YF patients at acute/(D1-15) and convalescent/(D16-315) phases. Patients with acute YF infection displayed a trimodal viremia profile spreading along D3, D6, and D8-14. A massive storm of mediators was observed in acute YF. Higher levels of mediators were observed in YF with higher morbidity scores, patients under intensive care, and those progressing to death than in YF patients who progress to late-relapsing hepatitis/L-Hep. A unimodal peak of biomarkers around D4-6 with a progressive decrease towards D181-315 was observed in non-L-Hep patients, while a bimodal pattern with a second peak around D61-90 was associated with L-Hep. This study provided a comprehensive landscape of evidence that distinct immune responses drive pathogenesis, disease progression, and L-Hep in YF patients.


Subject(s)
Hepatitis , Yellow Fever Vaccine , Yellow Fever , Humans , Yellow Fever/pathology , Prognosis , Cytokines , Biomarkers
3.
Viruses ; 14(9)2022 08 30.
Article in English | MEDLINE | ID: mdl-36146723

ABSTRACT

Infections caused by SARS-CoV-2 induce a severe acute respiratory syndrome called COVID-19 and have led to more than six million deaths worldwide. Vaccination is the most effective preventative measure, and cellular and humoral immunity is crucial to developing individual protection. Here, we aim to investigate hybrid immunity against SARS-CoV-2 triggered by the ChAadOx1 nCoV-19 vaccine in a Brazilian cohort. We investigated the immune response from ChAadOx1 nCoV-19 vaccination in naïve (noCOVID-19) and previously infected individuals (COVID-19) by analyzing levels of D-dimers, total IgG, neutralizing antibodies (Nabs), IFN-γ (interferon-γ) secretion, and immunophenotyping of memory lymphocytes. No significant differences in D-dimer levels were observed 7 or 15 days after vaccination (DAV). All vaccinated individuals presented higher levels of total IgG or Nabs with a positive correlation (R = 0.88). Individuals in the COVID-19 group showed higher levels of antibody and memory B cells, with a faster antibody response starting at 7 DAV compared to noCOVID-19 at 15 DAV. Further, ChAadOx1 nCoV-19 vaccination led to enhanced IFN-γ production (15 DAV) and an increase in activated T CD4+ naïve cells in noCOVID-19 individuals in contrast with COVID-19 individuals. Hence, our data support that hybrid immunity triggered by ChAadOx1 nCoV-19 vaccination is associated with enhanced humoral response, together with a balanced cellular response.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Humans , Immunity, Cellular , Immunity, Humoral , Immunoglobulin G , Interferon-gamma , SARS-CoV-2 , Vaccination
4.
J Med Primatol ; 50(1): 36-45, 2021 02.
Article in English | MEDLINE | ID: mdl-33219623

ABSTRACT

BACKGROUND: Alouatta spp. are highly susceptible to yellow fever (YF) infection and develop an often fatal disease. The threat posed by an outbreak started in 2016 leads us to investigate vaccination as a potential tool in preventing YF in non-human primates (NHP). METHODS: Susceptible howler monkeys were immunized with three different concentrations of the human Brazilian commercial YF17DD vaccine. Post-vaccination viremia/RNAemia, immunogenicity, and safety were characterized. RESULTS: The vaccine did not produce YF clinical manifestations in any of the NHPs. After immunization, all animals seroconverted demonstrating the ability of the YF vaccine to induce humoral response in Alouatta species. CONCLUSIONS: The present work has demonstrated the safe and immunogenic profile of the existing YF 17DD vaccine in howler monkeys. This knowledge may support further studies with other susceptible monkey species and provide a possible solution for controlling epizootics and preventing the devastation of endangered species.


Subject(s)
Alouatta/immunology , Immunogenicity, Vaccine , Yellow Fever Vaccine/adverse effects , Animals , Female , Male , Species Specificity , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/immunology , Yellow Fever Vaccine/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...