Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Nutr Food Res ; 65(10): e2000943, 2021 05.
Article in English | MEDLINE | ID: mdl-33650755

ABSTRACT

SCOPE: Coconut oil (CO) diets remain controversial due to the possible association with metabolic disorder and obesity. This study investigates the metabolic effects of a low amount of CO supplementation. METHODS AND RESULTS: Swiss male mice are assigned to be supplemented orally during 8 weeks with 300 µL of water for the control group (CV), 100 or 300 µL of CO (CO100 and CO300) and 100 or 300 µL of soybean oil (SO; SO100 and SO300). CO led to anxious behavior, increase in body weight gain, and adiposity. In the hypothalamus, CO and SO increase cytokines expression and pJNK, pNFKB, and TLR4 levels. Nevertheless, the adipose tissue presented increases macrophage infiltration, TNF-α and IL-6 after CO and SO consumption. IL-1B and CCL2 expression, pJNK and pNFKB levels increase only in CO300. In the hepatic tissue, CO increases TNF-α and chemokines expression. Neuronal cell line (mHypoA-2/29) exposed to serum from CO and SO mice shows increased NFKB migration to the nucleus, TNF-α, and NFKBia expression, but are prevented by inhibitor of TLR4 (TAK-242). CONCLUSIONS: These results show that a low-dose CO changes the behavioral pattern, induces inflammatory pathway activation, TLR4 expression in healthy mice, and stimulates the pro-inflammatory response through a TLR4-mediated mechanism.


Subject(s)
Behavior, Animal/drug effects , Coconut Oil/administration & dosage , Coconut Oil/adverse effects , Hypothalamic Diseases/chemically induced , Inflammation/chemically induced , Metabolic Diseases/chemically induced , Adiposity/drug effects , Animals , Blood Glucose/analysis , Dietary Supplements , Male , Mice , Motor Activity/drug effects , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/physiology , Weight Gain/drug effects
2.
Photodiagnosis Photodyn Ther ; 33: 102161, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33373741

ABSTRACT

BACKGROUND: Surface decontamination of hospital environments is essential to ensure the safety of health professionals and patients. This process is usually performed through active chemicals substances with high toxicity, and new decontamination technologies that do not leave residues have been currently used, such as UV-C light. Thus, the objective of the present study is to evaluate the effectiveness of a portable UV-C light device on the viability of standard pathogenic strains and other microorganisms isolated from different surfaces of a public health hospital. METHODS: In vitro decontamination was performed by applying Biosept Home© UV-C to Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica and Candida albicans. In real conditions, the application was made on different surfaces of a hospital. The device used in the experiment haa a 254 nm UV-C light and a radiation intensity of 45.6 mW/cm2 over a distance of 1 cm from the surfaces. The light dose was 0.912 J/cm2 for 20 s of application in both conditions (in vitro and hospital). RESULTS: After in vitro decontamination with UV-C light no bacterial growth was observed, demonstrating 100 % of bacterial inactivation under the conditions tested. Additionally, there was a reduction of approximately 4 logs for the yeast C. albicans. In all hospital surfaces, the number of colonies of microorganisms was significantly reduced after the procedure. CONCLUSION: The results suggest that Biosept Home© UV-C is efficient and constitutes a promosing intervention for disinfection protocols in hospitals and clinics.


Subject(s)
Decontamination , Photochemotherapy , Disinfection , Hospitals , Humans , Photochemotherapy/methods , Photosensitizing Agents , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...