Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Microb Pathog ; 162: 105341, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34883228

ABSTRACT

Serological tests used for the diagnosis of tegumentary leishmaniasis (TL) presents problems, mainly related to their variable sensitivity and/or specificity, which can be caused by low levels of antileishmanial antibodies or by presence of cross-reactive diseases, respectively. In this context, the search for new antigenic candidates presenting higher sensitivity and specificity is urgently required. In the present study, the amino acid sequences of the LiHyT, LiHyD, LiHyV, and LiHyP proteins, which were previously showed to be antigenic in the visceral leishmaniasis (VL), were evaluated and eight B-cell epitopes were predicted and used for construction of gene codifying a chimeric protein called ChimLeish. The protein was expressed, purified and evaluated as a recombinant antigen in ELISA (Enzyme-Linked Immunosorbent Assay) for the diagnosis of TL. The own B cell epitopes used to construct the chimera were synthetized and also evaluated as antigens, as well as a soluble Leishmania braziliensis antigenic extract (SLA). Results showed that ChimLeish presented 100% sensitivity and specificity to diagnose TL, while synthetic peptides showed sensitivity varying from 9.1% to 90.9%, while specificity reached from 98.3% to 99.1%. SLA showed sensitivity and specificity of 18.2% and 98.3%, respectively. A preliminary prognostic evaluation showed that anti-ChimLeish IgG antibodies declined in significant levels, when serological reactivity was compared before and six months after treatment, suggesting also a possible prognostic role of this antigen for TL.


Subject(s)
Leishmania , Leishmaniasis , Antibodies, Protozoan , Antigens, Protozoan/genetics , Enzyme-Linked Immunosorbent Assay , Epitopes, B-Lymphocyte/genetics , Humans , Leishmania/genetics , Recombinant Fusion Proteins/genetics , Sensitivity and Specificity , Serologic Tests
2.
Pharmaceutics ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36678729

ABSTRACT

The liposomal amphotericin B (AmB) formulation, AmBisome®, still represents the best therapeutic option for cutaneous and visceral leishmaniasis. However, its clinical efficacy depends on the patient's immunological status, the clinical manifestation and the endemic region. Moreover, the need for parenteral administration, its side effects and high cost significantly limit its use in developing countries. This review reports the progress achieved thus far toward the understanding of the mechanism responsible for the reduced toxicity of liposomal AmB formulations and the factors that influence their efficacy against leishmaniasis. It also presents the recent advances in the development of more effective liposomal AmB formulations, including topical and oral liposome formulations. The critical role of the AmB aggregation state and release rate in the reduction of drug toxicity and in the drug efficacy by non-invasive routes is emphasized. This paper is expected to guide future research and development of innovative liposomal formulations of AmB.

3.
Acta Trop ; 224: 106126, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34537185

ABSTRACT

Laboratory diagnosis of leishmaniasis shows variable efficacy in detecting infected mammalian hosts and there is a need to identify suitable antigens to improve the accuracy of diagnostic tests. In the present study, a L. infantum hypothetical protein called LiHyQ was evaluated for the diagnosis of tegumentary (TL) and visceral (VL) leishmaniasis using canine and human samples. A collection of dog sera (n=155) were tested and contained samples from asymptomatic (n=20) and symptomatic (n=25) VL animals, from healthy dogs living in endemic (n=25) or non-endemic (n=25) areas of disease, from Leish-Tec® vaccinated dogs (n=20) or from dogs infected with Ehrlichia canis (n=15), Babesia canis (n=10) and Trypanosoma cruzi (n=15). Sensitivity (Se), Specificity (Sp), Positive Predictive Value (PPV) and Negative Predictive Value (NPV) of 100% were observed for rLiHyQ with these samples, whereas the Se, Sp, PPV and NPV values with L. infantum Soluble Leishmania Antigen (SLA) preparation were 60.0%, 99.0%, 96.0% and 86.0%, respectively. A collection of human sera (n=305) were tested and contained samples from TL (n=50) and VL (n=40) patients, from VL/HIV co-infected patients (n=35), from patients infected with HIV alone (n=30), Chagas Disease (n=30), malaria (n=10), tuberculosis (n=10), paracoccidioidomycosis (n=15), leprosy (n=30) or aspergillosis (n=15); and from healthy subjects (n=40). Se, Sp, PPV and NPV values of 100% were observed for rLiHyQ with these samples, whereas the Se, Sp, PPV and NPV values with SLA were 58.0%, 76.0%, 50.0% and 82.0%, respectively. The antibody reactivity against the protein was compared with commercial kits, and the kappa index varied from 0.95 to 1.00 for rLiHyQ, and of 0.55 to 0.82 for the kits. In addition, the serological follow-up of treated patients showed a significant reduction in rLiHyQ-specific IgG antibody levels. All canine and human samples were tested at the same time using the same reagents, in order to reduce experimental variation and interference in data interpretation. In conclusion, our preliminary data suggest a diagnostic and prognostic role for rLiHyQ against leishmaniasis.


Subject(s)
Coinfection , Dog Diseases , HIV Infections , Leishmania infantum , Leishmaniasis, Visceral , Leishmaniasis , Animals , Antibodies, Protozoan , Antigens, Protozoan , Coinfection/diagnosis , Coinfection/veterinary , Dog Diseases/diagnosis , Dogs , HIV , Humans , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/veterinary , Prognosis , Sensitivity and Specificity , Serologic Tests
4.
Vet Parasitol ; 296: 109513, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34225189

ABSTRACT

Visceral leishmaniasis (VL) is an important public health problem in the world, and control measures are insufficient to avoid the spread of this neglected disease. Dogs are important domestic reservoirs of Leishmania parasites in countries where VL is a zoonosis, representing a major source of infection between sand fly vectors and humans. In this context, a precise diagnosis of canine leishmaniasis (CanL) could help to reduce the number of human cases. Distinct approaches for the diagnosis of CanL have used recombinant proteins in serological assays. However, variable results of the antigens have been found, mainly to diagnosis asymptomatic cases. The present study used bioinformatics to select specific B-cell epitopes of four Leishmania infantum proteins, which had previously been proven to be antigenic in VL, aiming to produce a novel chimeric protein and to evaluate it for the diagnosis of CanL. Seven B-cell epitopes were identified and used to construct the chimera, which was analyzed in a recombinant format through an ELISA assay against a canine serological panel. A soluble Leishmania antigenic extract (SLA) was used as an antigen control. Results showed 100 % sensitivity and specificity for chimera, while when using SLA the values were 26.0 % and 96.4 %, respectively. The performance of chimera was compared with a commercial kit using asymptomatic and symptomatic dog sera, and the data showed that no false-negative result was found when the recombinant protein was used. However, when using the commercial kit, 40.0 % and 16.0 % of the false-negative results were found, respectively. In conclusion, the recombinant chimera showed an antigenic potential to be evaluated in new studies against a larger serological panel for the diagnosis of CanL.


Subject(s)
Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Animals , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Dog Diseases/diagnosis , Dogs , Enzyme-Linked Immunosorbent Assay/veterinary , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Leishmania infantum/genetics , Leishmania infantum/immunology , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/veterinary , Recombinant Fusion Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sensitivity and Specificity , Serologic Tests/veterinary
5.
Med Microbiol Immunol ; 210(2-3): 133-147, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33870453

ABSTRACT

Treatment against visceral leishmaniasis (VL) is mainly hampered by drug toxicity, long treatment regimens and/or high costs. Thus, the identification of novel and low-cost antileishmanial agents is urgent. Acarbose (ACA) is a specific inhibitor of glucosidase-like proteins, which has been used for treating diabetes. In the present study, we show that this molecule also presents in vitro and in vivo specific antileishmanial activity against Leishmania infantum. Results showed an in vitro direct action against L. infantum promastigotes and amastigotes, and low toxicity to mammalian cells. In addition, in vivo experiments performed using free ACA or incorporated in a Pluronic® F127-based polymeric micelle system called ACA/Mic proved effective for the treatment of L. infantum-infected BALB/c mice. Treated animals presented significant reductions in the parasite load in their spleens, livers, bone marrows and draining lymph nodes when compared to the controls, as well as the development of antileishmanial Th1-type humoral and cellular responses based on high levels of IFN-γ, IL-12, TNF-α, GM-CSF, nitrite and IgG2a isotype antibodies. In addition, ACA or ACA-treated animals suffered from low organ toxicity. Treatment with ACA/Mic outperformed treatments using either Miltefosine or free ACA based on parasitological and immunological evaluations performed one and 15 days post-therapy. In conclusion, data suggest that the ACA/Mic is a potential therapeutic agent against L. infantum and merits further consideration for VL treatment.


Subject(s)
Acarbose/pharmacology , Acarbose/therapeutic use , Immunity , Leishmania infantum/drug effects , Leishmania infantum/immunology , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/immunology , Animals , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Drug Repositioning , Female , Leishmaniasis, Visceral/parasitology , Mice , Mice, Inbred BALB C , Micelles , Parasite Load , Phosphorylcholine/analogs & derivatives , Phosphorylcholine/therapeutic use , Reactive Oxygen Species/metabolism , Treatment Outcome
6.
Microb Pathog ; 151: 104745, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33485994

ABSTRACT

Treatment for visceral leishmaniasis (VL) is hampered mainly by the toxicity and/or high cost of antileishmanial drugs. What is more, variability on sensitivity and/or specificity of diagnostic tests hinders effective disease management. In this context, prophylactic vaccination should be considered as a strategy to prevent disease. In the present study, immunogenicity of the Leishmania eukaryotic Elongation Factor-1 beta (EF1b) protein, classified as a Leishmania virulence factor, was evaluated in vitro and in vivo and tested, for the first time, as a vaccine candidate against Leishmania infantum infection. The antigen was administered as DNA vaccine or as recombinant protein (rEF1b) delivered in saponin. BALB/c mice immunization with a DNA plasmid and recombinant protein plus saponin induced development of specific Th1-type immunity, characterized by high levels of IFN-γ, IL-12, GM-CSF, both T cell subtypes and antileishmanial IgG2a isotype antibodies, before and after infection. This immunological response to the vaccines was corroborated further by parasitological analysis of the vaccinated and then challenged mice, which showed significant reductions in the parasite load in their liver, spleen, bone marrow and draining lymph nodes, when compared to the controls. Vaccination using rEF1b/saponin induced a more robust Th1 response and parasitological protection when compared to the DNA vaccine. Furthermore, in vitro analysis of lymphoproliferation, IFN-γ and IL-10 levels in human PBMC cultures showed as well development of a specific Th1-type response. In conclusion, data suggest that EF1b could be a promising vaccine candidate to protect against L. infantum infection.


Subject(s)
Leishmania infantum , Leishmaniasis Vaccines , Animals , Antigens, Protozoan/genetics , Leukocytes, Mononuclear , Mice , Mice, Inbred BALB C , Peptide Elongation Factors
7.
Parasitology ; 148(13): 1706-1714, 2021 11.
Article in English | MEDLINE | ID: mdl-35060464

ABSTRACT

The diagnosis of visceral leishmaniasis (VL) has improved with the search of novel antigens; however, their performance is limited when samples from VL/human immunodeficiency virus (HIV)-coinfected patients are tested. In this context, studies conducted to identify more suitable antigens to detect both VL and VL/HIC coinfection cases should be performed. In the current study, phage display was performed using serum samples from healthy subjects and VL, HIV-infected and VL/HIV-coinfected patients; aiming to identify novel phage-exposed epitopes to be evaluated with this diagnostic purpose. Nine non-repetitive and valid sequences were identified, synthetized and tested as peptides in enzyme-linked immunosorbent assay experiments. Results showed that three (Pep2, Pep3 and Pep4) peptides showed excellent performance to diagnose VL and VL/HIV coinfection, with 100% sensitivity and specificity values. The other peptides showed sensitivity varying from 50.9 to 80.0%, as well as specificity ranging from 60.0 to 95.6%. Pep2, Pep3 and Pep4 also showed a potential prognostic effect, since specific serological reactivity was significantly decreased after patient treatment. Bioinformatics assays indicated that Leishmania trypanothione reductase protein was predicted to contain these three conformational epitopes. In conclusion, data suggest that Pep2, Pep3 and Pep4 could be tested for the diagnosis of VL and VL/HIV coinfection.


Subject(s)
Bacteriophages , Coinfection , HIV Infections , Leishmaniasis, Visceral , Coinfection/diagnosis , Epitopes , HIV , HIV Infections/diagnosis , Humans , Leishmaniasis, Visceral/diagnosis
9.
NPJ Vaccines ; 5: 75, 2020.
Article in English | MEDLINE | ID: mdl-32821440

ABSTRACT

Leishmaniases are neglected diseases caused by infection with Leishmania parasites and there are currently no prophylactic vaccines. In this study, we designed in silico a synthetic recombinant vaccine against visceral leishmaniasis (VL) called ChimeraT, which contains specific T-cell epitopes from Leishmania Prohibitin, Eukaryotic Initiation Factor 5a and the hypothetical LiHyp1 and LiHyp2 proteins. Subcutaneous delivery of ChimeraT plus saponin stimulated a Th1 cell-mediated immune response and protected mice against L. infantum infection, significantly reducing the parasite load in distinct organs. ChimeraT/saponin vaccine stimulated significantly higher levels of IFN-γ, IL-12, and GM-CSF cytokines by both murine CD4+ and CD8+ T cells, with correspondingly low levels of IL-4 and IL-10. Induced antibodies were predominantly IgG2a isotype and homologous antigen-stimulated spleen cells produced significant nitrite as a proxy for nitric oxide. ChimeraT also induced lymphoproliferative responses in peripheral blood mononuclear cells from VL patients after treatment and healthy subjects, as well as higher IFN-γ and lower IL-10 secretion into cell supernatants. Thus, ChimeraT associated with a Th1 adjuvant could be considered as a potential vaccine candidate to protect against human disease.

10.
Cell Immunol ; 356: 104194, 2020 10.
Article in English | MEDLINE | ID: mdl-32827943

ABSTRACT

Most studies evaluating vaccine candidates against visceral leishmaniasis (VL) have used parasite promastigote-expressed antigens; however, Leishmania proteins expressed in the amastigote forms should be considered, since few hours after infection this stage comes into contact with the host immune system and is responsible for the development of the disease. In this context, in the present study, a Leishmania amastigote-specific hypothetical protein, called LiHyJ, was evaluated as a recombinant protein plus saponin as an adjuvant or DNA vaccine to protect against VL. The vaccine effect was evaluated by means of the evaluation of immunological and parasitological analyses performed in BALB/c mice against Leishmania infantum infection. Results showed that rLiHyJ/saponin and DNA LiHyJ induced significantly higher levels of anti-protein and anti-parasite IFN-γ, IL-12, GM-CSF, and IgG2a isotype antibodies, which were associated with a low presence of IL-4 and IL-10. DNA vaccination induced higher IFN-γ production, mainly by CD8+ T cells, while rLiHyJ/saponin stimulated the production of this cytokine, mainly by CD4+ T cells. The parasite load evaluated in distinct organs showed that both immunization schedules significantly reduced organic parasitism, when compared to the controls. Similar results were found in the immunological and parasitological assays when using the recombinant protein or DNA, although the vaccination with rLiHyJ plus saponin induced a slightly higher Th1 response and lower parasite load, when compared to the use of DNA plasmid. The protein also proved to be immunogenic when peripheral blood mononuclear cells of treated VL patients and healthy subjects were in vitro stimulated, since higher IFN-γ and lower IL-4 and IL-10 levels were found in the culture supernatants. In conclusion, LiHyJ should be considered in future studies as a vaccine candidate to protect against VL.


Subject(s)
Leishmania/immunology , Leishmaniasis Vaccines/immunology , Vaccines, DNA/immunology , Adjuvants, Immunologic/administration & dosage , Adult , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , DNA/immunology , Female , Humans , Leishmania/pathogenicity , Leishmania infantum/immunology , Leishmaniasis, Visceral/immunology , Leukocytes, Mononuclear/immunology , Male , Mice , Mice, Inbred BALB C , Middle Aged , Protozoan Proteins/immunology , Recombinant Proteins/immunology
11.
J Dent Child (Chic) ; 87(2): 83-89, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32788001

ABSTRACT

Purpose: Radiation-related caries is characterized by enamel delamination near the dentinoenamel junction (DEJ). We investigated the activity and expression of the matrix metalloproteinases (MMPs) -2 and -9 in order to understand disease pathogenesis in teeth submitted or not to radiotherapy (RT).
Methods: In situ zymography and immunofluorescence assays were performed to evaluate the activity and expression of MMPs -2 and -9, respectively. Twelve primary second molars were randomly assigned into two experimental subgroups: irradiated and nonirradiated. Dental fragments were exposed to radiation at a dose fraction of two Gy for five consecutive days until reaching the total dose of 60 Gy. The percentage of fluorescence in the DEJ was evaluated in three distinct regions of the tooth (cervical, cusp, and pit). The regions were photographed under fluorescence microscopy at 1.25× and 5× magnification.
Results: The intensity of fluorescence per mm 2 in the DEJ was higher in the cervical region of irradiated primary teeth (P <0.05) versus nonirradiated ones. In these areas, immunofluorescence revealed expression of MMPs -2 and -9.
Conclusion: Radiotherapy can increase the activity of MMPs -2 and -9 in the cervical region of the DEJ of primary teeth.


Subject(s)
Dentin , Matrix Metalloproteinases , Dental Enamel , Humans , Molar , Tooth, Deciduous
12.
Exp Parasitol ; 216: 107941, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32622940

ABSTRACT

Distinct antigens have been evaluated with diagnostic purpose for canine and human visceral leishmaniasis (VL), and variable sensitivity and specificity values have been obtained in the assays. In the present study, a Leishmania infantum hypothetical protein called LiHyG, which was identified in an immunoproteomics study in Leishmania infantum amastigote extracts by antibodies in VL dogs sera; was cloned, expressed, purified and evaluated as a recombinant protein (rLiHyG) for the diagnosis of canine and human disease. The recombinant amastigote-specific A2 protein (rA2) and a soluble L. infantum protein extract (SLA) were used as controls. For canine VL, the sensitivity values were of 100%, 57.29% and 48.57%, when rLiHyG, rA2 and SLA were used, respectively, while the specificity values were of 100%, 81.43% and 88.57%, respectively. In addition, AUC values were of 1.00, 0.72 and 0.65, when rLiHyG, rA2 and SLA were used, respectively, while accuracy was of 100%, 72.38% and 75.24%, respectively. For human VL, the sensitivity values were of 100%, 84.00% and 88.00%, when rLiHyG, rA2 and SLA were used, respectively, while the specificity values were of 100%, 58.75% and 73.75%, respectively. In addition, AUC values were of 1.00, 0.76 and 0.83, when rLiHyG, rA2 and SLA were used, respectively, while accuracy was of 100%, 64.8% and 66.6%, respectively. The prognostic role of rLiHyG in the human VL was also evaluated, by means of post-therapeutic serological follow-up with sera samples collected before and six months after treatment. Results showed that treated patients presented significant reductions in the anti-rLiHyG IgG, IgG1, and IgG2 antibody levels, with results being similar to those found in healthy subjects. Testing the rA2 protein and SLA as antigens, lower IgG, IgG1, and IgG2 levels were also found, although they were higher after treatment than those obtained for rLiHyG. In conclusion, results suggested that rLiHyG could be considered for future studies as a diagnostic and/or prognostic marker for canine and human VL.


Subject(s)
Antigens, Protozoan/isolation & purification , Dog Diseases/parasitology , Leishmania infantum/immunology , Leishmaniasis, Visceral/diagnosis , Adult , Aged , Amino Acid Sequence , Animals , Antigens, Protozoan/genetics , Bone Marrow/parasitology , Computational Biology , DNA, Protozoan/chemistry , DNA, Protozoan/isolation & purification , Dog Diseases/diagnosis , Dogs , Enzyme-Linked Immunosorbent Assay , Epitopes, B-Lymphocyte/chemistry , Female , Humans , Immunoglobulin G/blood , Leishmania infantum/genetics , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/veterinary , Male , Middle Aged , Prognosis , Protozoan Proteins/chemistry , Sensitivity and Specificity , Sequence Alignment , Serologic Tests , Spleen/parasitology , Young Adult
13.
Microb Pathog ; 147: 104283, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32485231

ABSTRACT

The treatment against visceral leishmaniasis (VL) presents problems, mainly related to the toxicity and/or high cost of the drugs. In this context, a rapid and precise diagnosis of the disease should be performed, mainly to treat patients as soon as possible, aiming to reduce the treatment time and the toxicity of the therapeutics. In the present study, the diagnostic role of an amastigote-specific Leishmania protein was evaluated in the canine and human VL. Results showed that the recombinant protein (called rLiHyJ) and one specific B cell epitope (called PeptJ) predicted from protein sequence presented high sensitivity and specificity values to diagnose canine and human disease, showing also a low reactivity against cross-reactive samples. The rA2 protein and a parasite antigenic extract showed variable sensitivity and/or specificity values in the ELISA experiments. A prognostic evaluation of protein and peptide in the human VL indicated that specific IgG antibodies significantly decreased after treatment, when compared to be values obtained before therapy. The in vitro immunogenicity using rLiHyJ in peripheral blood mononuclear cell (PBMC) cultures collected of such patients and healthy subjects suggested that the protein induced lymphoproliferation and high IFN-γ production in the stimulated cells. In conclusion, although preliminary, results suggest that rLiHyJ and PeptJ could present distinct biotechnological applications in the canine and human VL.


Subject(s)
Dog Diseases , Leishmania infantum , Leishmaniasis, Visceral , Animals , Antigens, Protozoan , Dog Diseases/diagnosis , Dogs , Epitopes, B-Lymphocyte , Humans , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/veterinary , Leukocytes, Mononuclear
14.
Mol Immunol ; 124: 161-171, 2020 08.
Article in English | MEDLINE | ID: mdl-32585510

ABSTRACT

Leishmania infantum pyridoxal kinase (PK) protein was characterized after an immunoproteomics screening performed with the sera from patients suffering visceral leishmaniasis (VL). Since it was recognized by sera of mammalian hosts infected by a viscerotropic Leishmania species, PK could emerge as a new vaccine candidate against disease, due to its antigenicity and immunogenicity. In this context, in the present study, the effects of the immunization using PK were evaluated when administered as a DNA plasmid (pDNAA3/PK) or recombinant protein (rPK) plus saponin. The immune response elicited by both vaccination regimens reduced in significant levels the parasite load in spleen, liver, draining lymph nodes and bone marrow, being associated with the development of Th1-type immune response, which was characterized by high levels of IFN-γ, IL-12, GM-CSF, and specific IgG2a antibody, besides low production of IL-4, IL-10, and protein and parasite-specific IgG1 antibodies. CD8+ T cells were more important in the IFN-γ production in the pDNAA3/PK group, while CD4+ T cells contributed more significantly to production of this cytokine in the rPK/Saponin group. In addition, increased IFN-γ secretion, along with low levels of IL-10, were found when PBMCs from VL patients after treatment and healthy individuals were stimulated with the protein. In conclusion, when administered either as a DNA plasmid or recombinant protein plus adjuvant, PK can direct the immune response towards a Th1-type immune profile, protecting mice against L. infantum challenge; therefore, it can be seen as a promising immunogen against human VL.


Subject(s)
Antigens, Protozoan/immunology , Leishmaniasis Vaccines/immunology , Leishmaniasis, Visceral/immunology , Pyridoxal Kinase/immunology , Animals , Antibodies, Protozoan/immunology , Humans , Leishmania infantum/immunology , Mice , Recombinant Proteins/immunology , Vaccines, DNA/immunology
15.
Vaccines (Basel) ; 8(2)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32526867

ABSTRACT

Background: Leishmaniases are neglected diseases caused by infection with Leishmania parasites and there are no human vaccines in use routinely. The purpose of this study was to examine the immunogenicity of ChimeraT, a novel synthetic recombinant vaccine against visceral leishmaniasis (VL), incorporated into a human-compatible liposome formulation. Methods: BALB/c mice were immunized subcutaneously with ChimeraT/liposome vaccine, ChimeraT/saponin adjuvant, or ChimeraT/saline and immune responses examined in vitro and in vivo. Results: Immunization with the ChimeraT/liposome formulation induced a polarized Th1-type response and significant protection against L. infantum infection. ChimeraT/liposome vaccine stimulated significantly high levels of interferon (IFN)-γ, interleukin (IL)-12, and granulocyte macrophage-colony stimulating factor (GM-CSF) cytokines by both CD4 and CD8 T-cells, with correspondingly lower levels of IL-4 and IL-10 cytokines. Induced antibodies were predominantly IgG2a isotype, and homologous antigen-stimulated spleen cells produced significant nitrite as a proxy for nitric oxide (NO). Furthermore, we examined a small number of treated VL patients and found higher levels of circulating anti-ChimeraT protein IgG2 antibodies, compared to IgG1 levels. Conclusions: Overall, the liposomal formulation of ChimeraT induced a protective Th1-type immune response and thus could be considered in future studies as a vaccine candidate against human VL.

16.
Parasitology ; 147(9): 932-939, 2020 08.
Article in English | MEDLINE | ID: mdl-32308186

ABSTRACT

The co-infection between visceral leishmaniasis (VL) and human immunodeficiency virus (HIV) has increased in several countries in the world. The current serological tests are not suitable since they present low sensitivity to detect the most of VL/HIV cases, and a more precise diagnosis should be performed. In this context, in the present study, an immunoproteomics approach was performed using Leishmania infantum antigenic extracts and VL, HIV and VL/HIV patients sera, besides healthy subjects samples; aiming to identify antigenic markers for these clinical conditions. Results showed that 43 spots were recognized by antibodies in VL and VL/HIV sera, and 26 proteins were identified by mass spectrometry. Between them, ß-tubulin was expressed, purified and tested in ELISA experiments as a proof of concept for validation of our immunoproteomics findings and results showed high sensitivity and specificity values to detect VL and VL/HIV patients. In conclusion, the identified proteins in the present work could be considered as candidates for future studies aiming to improvement of the diagnosis of VL and VL/HIV co-infection.


Subject(s)
Coinfection/diagnosis , HIV Infections/diagnosis , Leishmania infantum/isolation & purification , Leishmaniasis, Visceral/diagnosis , Proteomics/methods , Protozoan Proteins/analysis , Adult , Brazil , Female , Humans , Male , Middle Aged
17.
Immunol Lett ; 220: 11-20, 2020 04.
Article in English | MEDLINE | ID: mdl-31981576

ABSTRACT

Visceral leishmaniasis (VL) is a highly neglected disease that is present in several countries worldwide. Present-day treatments against this disease are unsuitable, mainly due to the toxicity and/or high cost of drugs. In addition, the development of vaccines is still insufficient. In this scenario, a prompt VL diagnosis was deemed necessary, although sensitivity and/or specificity values of the tests have been. In this context, new antigenic candidates should be identified to be employed in a more precise diagnosis of canine and human VL. In this light, the present study evaluated the diagnostic efficacy of the Leishmania infantum pyridoxal kinase (PK) protein, applied in its recombinant version (rPK). In addition, one specific B-cell epitope derived of the PK sequence was predicted, synthetized, and evaluated as diagnostic marker. Results in ELISA tests showed that the antigens were highly sensitive to VL identification in dogs and human sera, presenting a low reactivity with VL-related disease samples. The recombinant A2 (rA2) protein and L. infantum antigenic preparation (SLA), used as controls, also proved to be highly sensitive in detecting symptomatic cases, although a low sensitivity was found when asymptomatic sera were analyzed. High cross-reactivity was also found when these antigens were evaluated against VL-related disease samples. The post-therapeutic serological follow-up showed that anti-rPK and anti-peptide IgG antibody levels decreased in significant levels after treatment. By contrast, the presence of high levels of the anti-rA2 and anti-SLA antibodies was still detected after therapy. In conclusion, rPK and its specific B-cell epitope should be considered for future studies as a diagnostic marker for canine and human VL.


Subject(s)
Antibodies, Protozoan/blood , Dog Diseases/diagnosis , Leishmania infantum/enzymology , Leishmaniasis, Visceral/diagnosis , Neglected Diseases/diagnosis , Protozoan Proteins/immunology , Pyridoxal Kinase/immunology , Amino Acid Sequence , Animals , Antigens, Protozoan/chemistry , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Cross Reactions , Dog Diseases/parasitology , Dogs , Enzyme-Linked Immunosorbent Assay , Epitopes, B-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology , Humans , Leishmania infantum/isolation & purification , Leishmaniasis, Visceral/veterinary , Neglected Diseases/parasitology , Neglected Diseases/veterinary , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Pyridoxal Kinase/chemistry , Pyridoxal Kinase/genetics , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Sensitivity and Specificity , Serologic Tests
18.
Acta Trop ; 203: 105318, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31870709

ABSTRACT

The serodiagnosis of visceral leishmaniasis (VL) presents problems related to the sensitivity and/or specificity of the tests. In this context, more refined antigens should be identified and applied for the improvement of disease diagnosis. In the present study, DNA with an encoding of a Leishmania infantum hypothetical protein, LiHyC, was cloned, and the recombinant protein was expressed, purified, and evaluated for the serodiagnosis of canine and human VL. In addition, a specific B-cell epitope present in the LiHyC sequence was predicted; the peptide was both synthetized and evaluated in the ELISA experiments. For comparison, commercial diagnostic kits were used against positive (VL hosts) and negative (healthy hosts) samples. Results showed that the recombinant protein (rLiHyC) and synthetic peptide (PeptC) were highly sensitive and specific to diagnose canine and human VL, with 100% sensitivity and specificity, while no false-positive or false-negative result was detected. When the DPP® CVL kit was used to identify canine samples, 44 and 52 of the 60 L. infantum-infected animals, without or with clinical signals of disease, respectively, were identified, while eight and four samples were considered as false-negatives, respectively. For human VL, an IT LEISH® kit was used, and 33 of the 40 VL patients were identified, while seven samples were considered to be false-negatives. Post-therapeutic serological follow-up testing sera samples from treated and untreated VL patients showed a significant drop in the anti-PeptC and anti-rLiHyC antibody levels, thus suggesting the feasibility to use the recombinant protein and/or synthetic peptide in future studies as diagnostic and/or prognostic markers for VL.


Subject(s)
Epitopes, B-Lymphocyte/immunology , Leishmania infantum/immunology , Leishmaniasis, Visceral/diagnosis , Adult , Animals , Antigens, Protozoan/immunology , Dogs , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Male , Middle Aged , Prognosis , Protozoan Proteins/immunology , Recombinant Proteins/immunology , Serologic Tests/methods
19.
Microb Pathog ; 137: 103783, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31600536

ABSTRACT

The laboratorial diagnosis of leishmaniasis is based on parasitological methods, which are invasive, present high cost, require laboratorial infrastructure and/or trained professionals; as well as by immunological methods, which usually present variable sensitivity and/or specificity, such as when they are applied to identify asymptomatic cases and/or mammalian hosts presenting low levels of antileishmanial antibodies. As consequence, new studies aiming to identify more refined antigens to diagnose visceral (VL) and tegumentary (TL) leishmaniasis are urgently necessary. In the present work, the Leishmania eukaryotic elongation factor-1 beta (EF1b) protein, which was identified in L. infantum protein extracts by antibodies in VL patients' sera, was cloned and its recombinant version (rEF1b) was expressed, purified and tested as a diagnostic marker for VL and TL. The post-therapeutic serological follow-up was also evaluated in treated and untreated VL and TL patients, when anti-rEF1b antibody levels were measured before and after treatment. Results showed that rEF1b was highly sensitive and specific to diagnose symptomatic and asymptomatic canine VL, as well as human TL and VL. In addition, low cross-reactivity was observed when sera from healthy subjects or leishmaniasis-related diseases patients were tested. The serological follow-up showed also that rEF1b-specific antibodies declined significantly after treatment, suggesting that this protein could be also evaluated as a prognostic marker for human leishmaniasis.


Subject(s)
Dog Diseases/parasitology , Eukaryotic Initiation Factor-1/immunology , Leishmania infantum/immunology , Leishmaniasis, Visceral/parasitology , Leishmaniasis, Visceral/veterinary , Protozoan Proteins/immunology , Adult , Animals , Antibodies, Protozoan/immunology , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Cross Reactions , Dog Diseases/diagnosis , Dog Diseases/immunology , Dogs , Enzyme-Linked Immunosorbent Assay , Eukaryotic Initiation Factor-1/genetics , Female , Humans , Leishmania infantum/genetics , Leishmania infantum/isolation & purification , Leishmaniasis/diagnosis , Leishmaniasis/immunology , Leishmaniasis/parasitology , Leishmaniasis/veterinary , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/immunology , Male , Middle Aged , Protozoan Proteins/genetics , Serologic Tests
20.
Immunobiology ; 224(4): 477-484, 2019 07.
Article in English | MEDLINE | ID: mdl-31164242

ABSTRACT

The measures for leishmaniasis control include the precise diagnosis of disease. However, although several recombinant antigens have been tested with this biotechnological purpose, no effective product exists, which could detects patients with the active disease, as well as differentiates them from cured and treated patients. In this study, a conserved Leishmania hypothetical protein, which was identified in Leishmania infantum parasites, but evaluated to presents high homology in the amino acid sequences between distinct parasite species, was evaluated for the diagnosis of tegumentary and visceral leishmaniasis. In addition, PBMCs collected from treated and untreated mucosal leishmaniasis (ML) and visceral leishmaniasis (VL) patients, as well as in healthy subjects living in endemic region of disease, were in vitro stimulated, when IFN-γ, IL-4 and IL-10 levels were evaluated in the cell supernatant. Regarding the serological analyses, ELISA experiments using the recombinant protein (rLiHyL) and a human serological panel revealed high sensitivity and specificity values to detect both diseases, while control antigens showed worst results. Regarding the cellular response, results showed that rLiHyL-stimulated cells produced higher IFN-γ and lower IL-4 and IL-10 levels in the supernatants. Also, the anti-protein antibody production was evaluated in these patients, and data showed higher IgG2 and lower IgG1 levels found in the treated patients and healthy controls, demonstrating the stimulation of a Th1-type response induced by the rLiHyL protein. In conclusion, this hypothetical protein can be considered as antigenic in TL and VL, as well as a vaccine candidate to be tested in future studies to protect against disease.


Subject(s)
Antigens, Protozoan/immunology , Leishmaniasis, Visceral/immunology , Protozoan Proteins/immunology , Recombinant Proteins , Adult , Antibodies, Protozoan/immunology , Antigens, Protozoan/genetics , Biomarkers , Case-Control Studies , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/immunology , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/parasitology , Male , Middle Aged , Protozoan Proteins/genetics , Serologic Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...