Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Aging ; 58: 54-67, 2017 10.
Article in English | MEDLINE | ID: mdl-28708977

ABSTRACT

To study age-related differences in neural activation during motor learning, functional magnetic resonance imaging scans were acquired from 25 young (mean 21.5-year old) and 18 older adults (mean 68.6-year old) while performing a bimanual coordination task before (pretest) and after (posttest) a 2-week training intervention on the task. We studied whether task-related brain activity and training-induced brain activation changes differed between age groups, particularly with respect to the hyperactivation typically observed in older adults. Findings revealed that older adults showed lower performance levels than younger adults but similar learning capability. At the cerebral level, the task-related hyperactivation in parietofrontal areas and underactivation in subcortical areas observed in older adults were not differentially modulated by the training intervention. However, brain activity related to task planning and execution decreased from pretest to posttest in temporo-parieto-frontal areas and subcortical areas in both age groups, suggesting similar processes of enhanced activation efficiency with advanced skill level. Furthermore, older adults who displayed higher activity in prefrontal regions at pretest demonstrated larger training-induced performance gains. In conclusion, in spite of prominent age-related brain activation differences during movement planning and execution, the mechanisms of learning-related reduction of brain activation appear to be similar in both groups. Importantly, cerebral activity during early learning can differentially predict the amplitude of the training-induced performance benefit between young and older adults.


Subject(s)
Brain/physiology , Healthy Aging/physiology , Healthy Aging/psychology , Learning/physiology , Motor Activity/physiology , Movement/physiology , Neuronal Plasticity/physiology , Psychomotor Performance/physiology , Adult , Aged , Brain/diagnostic imaging , Cerebral Cortex/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Prefrontal Cortex/physiology , Young Adult
2.
J Neuroeng Rehabil ; 13: 22, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26955873

ABSTRACT

BACKGROUND: Functional Electrical Stimulation (FES) is increasingly applied in neurorehabilitation. Particularly, the use of electrode arrays may allow for selective muscle recruitment. However, detecting the best electrode configuration constitutes still a challenge. METHODS: A multi-contact set-up with thirty electrodes was applied for combined FES and electromyography (EMG) recording of the forearm. A search procedure scanned all electrode configurations by applying single, sub-threshold stimulation pulses while recording M-waves of the extensor digitorum communis (EDC), extensor carpi radialis (ECR) and extensor carpi ulnaris (ECU) muscles. The electrode contacts with the best electrophysiological response were then selected for stimulation with FES bursts while capturing finger/wrist extension and radial/ulnar deviation with a kinematic glove. RESULTS: The stimulation electrodes chosen on the basis of M-waves of the EDC/ECR/ECU muscles were able to effectively elicit the respective finger/wrist movements for the targeted extension and/or deviation with high specificity in two different hand postures. CONCLUSIONS: A subset of functionally relevant stimulation electrodes could be selected fast, automatic and non-painful from a multi-contact array on the basis of muscle responses to subthreshold stimulation pulses. The selectivity of muscle recruitment predicted the kinematic pattern. This electrophysiologically driven approach would thus allow for an operator-independent positioning of the electrode array in neurorehabilitation.


Subject(s)
Electric Stimulation Therapy/methods , Electromyography/methods , Hand/physiology , Movement/physiology , Muscle, Skeletal/physiology , Neurological Rehabilitation/methods , Biomechanical Phenomena , Electrodes , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...