Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Stem Cell Res Ther ; 5(1): 5, 2014 Jan 10.
Article in English | MEDLINE | ID: mdl-24411922

ABSTRACT

INTRODUCTION: Among the plethora of cells under investigation to restore a functional myocardium, mesenchymal stromal cells (MSCs) have been granted considerable interest. However, whereas the beneficial effects of bone marrow MSCs (BM-MSCs) in the context of the diseased heart are widely reported, data are still scarce on MSCs from the umbilical cord matrix (UCM-MSCs). Herein we report on the effect of UCM-MSC transplantation to the infarcted murine heart, seconded by the dissection of the molecular mechanisms at play. METHODS: Human umbilical cord tissue-derived MSCs (UCX®), obtained by using a proprietary technology developed by ECBio, were delivered via intramyocardial injection to C57BL/6 females subjected to permanent ligation of the left descending coronary artery. Moreover, medium produced by cultured UCX® preconditioned under normoxia (CM) or hypoxia (CMH) was collected for subsequent in vitro assays. RESULTS: Evaluation of the effects upon intramyocardial transplantation shows that UCX® preserved cardiac function and attenuated cardiac remodeling subsequent to myocardial infarction (MI). UCX® further led to increased capillary density and decreased apoptosis in the injured tissue. In vitro, UCX®-conditioned medium displayed (a) proangiogenic activity by promoting the formation of capillary-like structures by human umbilical vein endothelial cells (HUVECs), and (b) antiapoptotic activity in HL-1 cardiomyocytes subjected to hypoxia. Moreover, in adult murine cardiac Sca-1+ progenitor cells (CPCs), conditioned medium enhanced mitogenic activity while activating a gene program characteristic of cardiomyogenic differentiation. CONCLUSIONS: UCX® preserve cardiac function after intramyocardial transplantation in a MI murine model. The cardioprotective effects of UCX® were attributed to paracrine mechanisms that appear to enhance angiogenesis, limit the extent of the apoptosis, augment proliferation, and activate a pool of resident CPCs. Overall, these results suggest that UCX® should be considered an alternative cell source when designing new therapeutic approaches to treat MI.


Subject(s)
Apoptosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Myocardial Infarction/therapy , Myocytes, Cardiac/cytology , Neovascularization, Physiologic , Ventricular Remodeling , Animals , Cell Differentiation , Cell Line , Cell Proliferation , Cells, Cultured , Female , Fetal Blood/cytology , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/physiology , Humans , Mesenchymal Stem Cells/physiology , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/physiology , Paracrine Communication
SELECTION OF CITATIONS
SEARCH DETAIL
...