Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Oral Biol ; 132: 105289, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34695671

ABSTRACT

OBJECTIVE: Evaluate the effects of testosterone replacement therapy (TRT) and mate tea (MT) [Ilex paraguariensis] on biochemical, functional, and redox parameters of saliva in orchiectomized rats (ORX) DESIGN: Sixty young adult male Wistar rats (3 months old) were either castrated bilaterally or underwent fictitious surgery (SHAM) and were distributed into 5 groups: SHAM, ORX, TU (castrated rats that received a single intramuscular injection of testosterone undecanoate 100 mg/kg), MT (castrated rats that received MT 20 mg/kg, via intragastric gavage, daily), and TU + MT. All treatments started 4 weeks after castration (4 months old) and lasted 4 weeks (5 months old). At the end of treatment, pilocarpine-induced salivary secretion was collected to analyze salivary flow rate (SFR) and biochemistry composition through determination of total protein (TP), amylase (AMY), electrolyte, and biomarkers of oxidative stress. RESULTS: ORX increased SFR, salivary buffering capacity, calcium, phosphate, chloride, total antioxidant capacity, thiobarbituric acid reactive substances (TBARs), and carbonyl protein, reduced TP and AMY activity, and did not change pH, sodium, and potassium compared to SHAM. TU and TU+MT restored all salivary parameters to values of SHAM, while only TBARs and AMY returned to SHAM levels in the MT group. CONCLUSIONS: TRT with long-acting TU restored the biochemical, functional, and redox parameters of saliva in orchiectomized rats. Although MT did not have a TRT-like effect on salivary gland function, the more effective reduction in lipid oxidative damage in the MT and TU + MT groups could be considered as adjuvant to alleviate the salivary oxidative stress induced by orchiectomy.


Subject(s)
Ilex paraguariensis , Animals , Oxidation-Reduction , Rats , Rats, Wistar , Saliva , Tea , Testosterone/pharmacology
2.
J Liposome Res ; 31(2): 169-176, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32228210

ABSTRACT

Leishmaniasis is a parasitic disease treatable and curable, however, the chemotherapeutic agents for their treatment are limited. In South American countries, pentavalent antimonials are still the first line of treatment for cutaneous leishmaniasis with an efficacy of about 75%, but the toxicity of the drug causes serious side effects and remains as the main obstacle for treatment. New knowledge aimed to improve drug delivery into the intracellular environment is essential, especially for drugs currently used in the clinic, to develop new anti-Leishmania formulations. In the present study, we analysed the scientific literature to highlight the progress achieved in the last decade regarding the use of nanotechnology for improving the current leishmaniasis treatments. Results allowed us to conclude that the encapsulated Glucantime liposomal formulation can be improved by means of nanoparticle functionalization processes, resulting in new drug delivery systems that can be potentially proposed as alternative therapies for leishmaniasis treatment.


Subject(s)
Antiprotozoal Agents , Leishmaniasis, Cutaneous , Leishmaniasis , Nanoparticles , Antiprotozoal Agents/therapeutic use , Drug Delivery Systems , Humans , Leishmaniasis/drug therapy , Leishmaniasis, Cutaneous/drug therapy , Liposomes/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...