Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(19)2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37834413

ABSTRACT

SARS-CoV-2 infection and/or vaccination elicit a broad range of neutralizing antibody responses against the different variants of concern (VOC). We established a new variant-adapted surrogate virus neutralization test (sVNT) and assessed the neutralization activity against the ancestral B.1 (WT) and VOC Delta, Omicron BA.1, BA.2, and BA.5. Analytical performances were compared against the respective VOC to the reference virus neutralization test (VNT) and two CE-IVD labeled kits using three different cohorts collected during the COVID-19 waves. Correlation analyses showed moderate to strong correlation for Omicron sub-variants (Spearman's r = 0.7081 for BA.1, r = 0.7205 for BA.2, and r = 0.6042 for BA.5), and for WT (r = 0.8458) and Delta-sVNT (r = 0.8158), respectively. Comparison of the WT-sVNT performance with two CE-IVD kits, the "Icosagen SARS-CoV-2 Neutralizing Antibody ELISA kit" and the "Genscript cPass, kit" revealed an overall good correlation ranging from 0.8673 to -0.8773 and a midway profile between both commercial kits with 87.76% sensitivity and 90.48% clinical specificity. The BA.2-sVNT performance was similar to the BA.2 Genscript test. Finally, a correlation analysis revealed a strong association (r = 0.8583) between BA.5-sVNT and VNT sVNT using a double-vaccinated cohort (n = 100) and an Omicron-breakthrough infection cohort (n = 91). In conclusion, the sVNT allows for the efficient prediction of immune protection against the various VOCs.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Humans , Neutralization Tests , SARS-CoV-2 , Breakthrough Infections , Antibodies, Viral
2.
Curr Issues Mol Biol ; 45(2): 1741-1761, 2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36826057

ABSTRACT

Since the emergence of SARS-CoV-2 Omicron BA.1 and BA.2, several Omicron sublineages have emerged, supplanting their predecessors. Here we compared the neutralization of Omicron sublineages BA.1, BA.2, BA.4 and BA.5 by human sera collected from individuals who were infected with the ancestral B.1 (D614G) strain, who were vaccinated (3 doses) or with breakthrough infection with pre-Omicron strains (Gamma or Delta). All Omicron sublineages exhibited extensive escape from all sera when compared to the ancestral B.1 strain and to Delta, albeit to different levels depending on the origin of the sera. Convalescent sera were unable to neutralize BA.1, and partly neutralized BA.2, BA.4 and BA.5. Vaccinee sera partly neutralized BA.2, but BA.1, BA.4 and BA.5 evaded neutralizing antibodies (NAb). Some breakthrough infections (BTI) sera were non-neutralizing. Neutralizing BTI sera had similar neutralizing ability against all Omicron sublineages. Despite similar levels of anti-Spike and anti-Receptor Binding Domain (RBD) antibodies in all groups, BTI sera had the highest cross-neutralizing ability against all Omicron sublineages and convalescent sera were the least neutralizing. Antibody avidity inferred from the NT50:antibody titer ratio was highest in sera from BTI patients, underscoring qualitative differences in antibodies elicited by infection or vaccination. Together, these findings highlight the importance of vaccination to trigger highly cross-reactive antibodies that neutralize phylogenetically and antigenically distant strains, and suggest that immune imprinting by first generation vaccines may restrict, but not abolish, cross-neutralization.

3.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34686593

ABSTRACT

Many viruses directly engage and require the dynein-dynactin motor-adaptor complex in order to transport along microtubules (MTs) to the nucleus and initiate infection. HIV type 1 (HIV-1) exploits dynein, the dynein adaptor BICD2, and core dynactin subunits but unlike several other viruses, does not require dynactin-1 (DCTN1). The underlying reason for HIV-1's variant dynein engagement strategy and independence from DCTN1 remains unknown. Here, we reveal that DCTN1 actually inhibits early HIV-1 infection by interfering with the ability of viral cores to interact with critical host cofactors. Specifically, DCTN1 competes for binding to HIV-1 particles with cytoplasmic linker protein 170 (CLIP170), one of several MT plus-end tracking proteins (+TIPs) that regulate the stability of viral cores after entry into the cell. Outside of its function as a dynactin subunit, DCTN1 also functions as a +TIP that we find sequesters CLIP170 from incoming particles. Deletion of the Zinc knuckle (Zn) domain in CLIP170 that mediates its interactions with several proteins, including DCTN1, increased CLIP170 binding to virus particles but failed to promote infection, further suggesting that DCTN1 blocks a critical proviral function of CLIP170 mediated by its Zn domain. Our findings suggest that the unique manner in which HIV-1 binds and exploits +TIPs to regulate particle stability leaves them vulnerable to the negative effects of DCTN1 on +TIP availability and function, which may in turn have driven HIV-1 to evolve away from DCTN1 in favor of BICD2-based engagement of dynein during early infection.


Subject(s)
Dynactin Complex/physiology , HIV Infections/physiopathology , HIV Infections/virology , HIV-1/physiology , Host Microbial Interactions/physiology , Microtubule-Associated Proteins/physiology , Neoplasm Proteins/physiology , Binding, Competitive , Cell Line , Dynactin Complex/antagonists & inhibitors , Dynactin Complex/genetics , Gene Knockdown Techniques , HEK293 Cells , HIV-1/pathogenicity , HeLa Cells , Humans , Jurkat Cells , Microglia/virology , Microtubule-Associated Proteins/chemistry , Models, Biological , Neoplasm Proteins/chemistry , Protein Domains , RNA, Small Interfering/genetics
4.
EMBO J ; 39(20): e104870, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32896909

ABSTRACT

While the microtubule end-binding protein, EB1 facilitates early stages of HIV-1 infection, how it does so remains unclear. Here, we show that beyond its effects on microtubule acetylation, EB1 also indirectly contributes to infection by delivering the plus-end tracking protein (+TIP), cytoplasmic linker protein 170 (CLIP170) to the cell periphery. CLIP170 bound to intact HIV-1 cores or in vitro assembled capsid-nucleocapsid complexes, while EB1 did not. Moreover, unlike EB1 and several other +TIPs, CLIP170 enhanced infection independently of effects on microtubule acetylation. Capsid mutants and imaging revealed that CLIP170 bound HIV-1 cores in a manner distinct from currently known capsid cofactors, influenced by pentamer composition or curvature. Structural analyses revealed an EB-like +TIP-binding motif within the capsid major homology region (MHR) that binds SxIP motifs found in several +TIPs, and variability across this MHR sequence correlated with the extent to which different retroviruses engage CLIP170 to facilitate infection. Our findings provide mechanistic insights into the complex roles of +TIPs in mediating early stages of retroviral infection, and reveal divergent capsid-based EB1 mimicry across retroviral species.


Subject(s)
Capsid/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Host Microbial Interactions , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Neoplasm Proteins/metabolism , Amino Acid Motifs , Animals , Cell Line , HIV Infections/genetics , HIV Infections/virology , HIV-1/genetics , HIV-1/pathogenicity , Host Microbial Interactions/genetics , Humans , Macaca , Microtubule-Associated Proteins/genetics , Molecular Mimicry , Neoplasm Proteins/genetics , Protein Binding , RNA, Small Interfering
5.
J Virol ; 94(14)2020 07 01.
Article in English | MEDLINE | ID: mdl-32376623

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) exploits a number of specialized microtubule (MT) plus-end tracking proteins (commonly known as +TIPs) to induce the formation of stable microtubules soon after virus entry and promote early stages of infection. However, given their functional diversity, the nature of the +TIPs involved and how they facilitate HIV-1 infection remains poorly understood. Here, we identify cytoplasmic linker-associated protein 2 (CLASP2), a +TIP that captures cortical MT plus ends to enable filament stabilization, as a host factor that enables HIV-1 to induce MT stabilization and promote early infection in natural target cell types. Using fixed- and live-cell imaging in human microglia cells, we further show that CLASP2 is required for the trafficking of incoming HIV-1 particles carrying wild-type (WT) envelope. Moreover, both WT CLASP2 and a CLASP2 mutant lacking its C-terminal domain, which mediates its interaction with several host effector proteins, bind to intact HIV-1 cores or in vitro-assembled capsid-nucleocapsid (CA-NC) complexes. However, unlike WT CLASP2, the CLASP2 C-terminal mutant is unable to induce MT stabilization or promote early HIV-1 infection. Our findings identify CLASP2 as a new host cofactor that utilizes distinct regulatory domains to bind incoming HIV-1 particles and facilitate trafficking of incoming viral cores through MT stabilization.IMPORTANCE While microtubules (MTs) have long been known to be important for delivery of incoming HIV-1 cores to the nucleus, how the virus engages and exploits these filaments remains poorly understood. Our previous work revealed the importance of highly specialized MT regulators that belong to a family called plus-end tracking proteins (+TIPs) in facilitating early stages of infection. These +TIPs perform various functions, such as engaging cargos for transport or engaging peripheral actin to stabilize MTs, suggesting several family members have the potential to contribute to infection in different ways. Here, we reveal that cytoplasmic linker-associated protein 2 (CLASP2), a key regulator of cortical capture and stabilization of MTs, interacts with incoming HIV-1 particles, and we identify a distinct C-terminal domain in CLASP2 that promotes both MT stabilization and early infection. Our findings identify a new +TIP acting as a host cofactor that facilitates early stages of viral infection.


Subject(s)
Cell Nucleus/metabolism , HIV Infections/metabolism , HIV-1/metabolism , Microglia/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Active Transport, Cell Nucleus , Cell Nucleus/genetics , Cell Nucleus/virology , HIV Infections/genetics , HIV-1/genetics , Humans , Jurkat Cells , Microglia/virology , Microtubule-Associated Proteins/genetics , Microtubules/genetics , Microtubules/virology , Mutation , Protein Domains
6.
PLoS One ; 11(9): e0161596, 2016.
Article in English | MEDLINE | ID: mdl-27598717

ABSTRACT

The cytoplasmic tail (gp41CT) of the HIV-1 envelope (Env) mediates Env incorporation into virions and regulates Env intracellular trafficking. Little is known about the functional impact of variability in this domain. To address this issue, we compared the replication of recombinant virus pairs carrying the full Env (Env viruses) or the Env ectodomain fused to the gp41CT of NL4.3 (EnvEC viruses) (12 subtype C and 10 subtype B pairs) in primary CD4+ T-cells and monocyte-derived-macrophages (MDMs). In CD4+ T-cells, replication was as follows: B-EnvEC = B-Env>C-EnvEC>C-Env, indicating that the gp41CT of subtype C contributes to the low replicative capacity of this subtype. In MDMs, in contrast, replication capacity was comparable for all viruses regardless of subtype and of gp41CT. In CD4+ T-cells, viral entry, viral release and viral gene expression were similar. However, infectivity of free virions and cell-to-cell transmission of C-Env viruses released by CD4+ T-cells was lower, suggestive of lower Env incorporation into virions. Subtype C matrix only minimally rescued viral replication and failed to restore infectivity of free viruses and cell-to-cell transmission. Taken together, these results show that polymorphisms in the gp41CT contribute to viral replication capacity and suggest that the number of Env spikes per virion may vary across subtypes. These findings should be taken into consideration in the design of vaccines.


Subject(s)
HIV Infections/transmission , HIV-1/genetics , Virus Replication/genetics , env Gene Products, Human Immunodeficiency Virus/genetics , CD4-Positive T-Lymphocytes/virology , Cell Line , HIV Envelope Protein gp41/genetics , HIV Infections/genetics , HIV Infections/virology , HIV-1/pathogenicity , Humans , Virion/genetics , Virus Internalization
7.
Retrovirology ; 10: 54, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23705972

ABSTRACT

Lentiviruses have unusually long envelope (Env) cytoplasmic tails, longer than those of other retroviruses. Whereas the Env ectodomain has received much attention, the gp41 cytoplasmic tail (gp41-CT) is one of the least studied parts of the virus. It displays relatively high conservation compared to the rest of Env. It has been long established that the gp41-CT interacts with the Gag precursor protein to ensure Env incorporation into the virion. The gp41-CT contains distinct motifs and domains that mediate both intensive Env intracellular trafficking and interactions with numerous cellular and viral proteins, optimizing viral infectivity. Although they are not fully understood, a multiplicity of interactions between the gp41-CT and cellular factors have been described over the last decade; these interactions illustrate how Env expression and incorporation into virions is a finely tuned process that has evolved to best exploit the host system with minimized genetic information. This review addresses the structure and topology of the gp41-CT of lentiviruses (mainly HIV and SIV), their domains and believed functions. It also considers the cellular and viral proteins that have been described to interact with the gp41-CT, with a particular focus on subtype-related polymorphisms.


Subject(s)
HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/metabolism , HIV/physiology , Virus Assembly , Virus Replication , Host-Pathogen Interactions , Humans , Models, Biological , Models, Molecular , Protein Binding , Protein Conformation , Protein Transport , gag Gene Products, Human Immunodeficiency Virus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...