Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 20(7): e1012336, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018347

ABSTRACT

Cullin-1-RING ubiquitin ligases (CRL1) or SCF1 (SKP1-CUL1-RBX1) E3 ubiquitin ligases are the largest and most extensively investigated class of E3 ligases in mammals that regulate fundamental processes, such as the cell cycle and proliferation. These enzymes are multiprotein complexes comprising SKP1, CUL1, RBX1, and an F-box protein that acts as a specificity factor by interacting with SKP1 through its F-box domain and recruiting substrates via other domains. E3 ligases are important players in the ubiquitination process, recognizing and transferring ubiquitin to substrates destined for degradation by proteasomes or processing by deubiquitinating enzymes. The ubiquitin-proteasome system (UPS) is the main regulator of intracellular proteolysis in eukaryotes and is required for parasites to alternate hosts in their life cycles, resulting in successful parasitism. Leishmania UPS is poorly investigated, and CRL1 in L. infantum, the causative agent of visceral leishmaniasis in Latin America, is yet to be described. Here, we show that the L. infantum genes LINF_110018100 (SKP1-like protein), LINF_240029100 (cullin-like protein-like protein), and LINF_210005300 (ring-box protein 1 -putative) form a LinfCRL1 complex structurally similar to the H. sapiens CRL1. Mass spectrometry analysis of the LinfSkp1 and LinfCul1 interactomes revealed proteins involved in several intracellular processes, including six F-box proteins known as F-box-like proteins (Flp) (data are available via ProteomeXchange with identifier PXD051961). The interaction of LinfFlp 1-6 with LinfSkp1 was confirmed, and using in vitro ubiquitination assays, we demonstrated the function of the LinfCRL1(Flp1) complex to transfer ubiquitin. We also found that LinfSKP1 and LinfRBX1 knockouts resulted in nonviable L. infantum lineages, whereas LinfCUL1 was involved in parasite growth and rosette formation. Finally, our results suggest that LinfCul1 regulates the S phase progression and possibly the transition between the late S to G2 phase in L. infantum. Thus, a new class of E3 ubiquitin ligases has been described in L. infantum with functions related to various parasitic processes that may serve as prospective targets for leishmaniasis treatment.

2.
Article in English | MEDLINE | ID: mdl-31712204

ABSTRACT

Chagas disease (CD) is a human infection caused by Trypanosoma cruzi CD was traditionally endemic to the Americas; however, due to migration it has spread to countries where it is not endemic. The current chemotherapy to treat CD induces several side effects, and its effectiveness in the chronic phase of the disease is controversial. In this contribution, substituted phenylbenzothiazole derivatives were synthesized and biologically evaluated as trypanocidal agents against Trypanosoma cruzi The trypanocidal activities of the most promising compounds were determined through systematic in vitro screening, and their modes of action were determined as well. The physicochemical-structural characteristics responsible for the trypanocidal effects were identified, and their possible therapeutic application in Chagas disease is discussed. Our results show that the fluorinated compound 2-methoxy-4-[5-(trifluoromethyl)-1,3-benzothiazol-2-yl] phenol (BT10) has the ability to inhibit the proliferation of epimastigotes [IC50(Epi) = 23.1 ± 1.75 µM] and intracellular forms of trypomastigotes [IC50(Tryp) = 8.5 ± 2.9 µM] and diminishes the infection index by more than 80%. In addition, BT10 has the ability to selectively fragment 68% of the kinetoplastid DNA compared with 5% of nucleus DNA. The mode of action for BT10 on T. cruzi suggests that the development of fluorinated phenylbenzothiazole with electron-withdrawing substituent is a promising strategy for the design of trypanocidal drugs.


Subject(s)
Cell Cycle/drug effects , Chagas Disease/drug therapy , Thiazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , CHO Cells , Chagas Disease/parasitology , Cricetulus , Halogenation , Humans , Thiazoles/chemistry , Trypanocidal Agents/chemistry , Trypanosoma cruzi/physiology
3.
Chembiochem ; 20(18): 2390-2401, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31026110

ABSTRACT

Class 1 myosins (Myo1s) were the first unconventional myosins identified and humans have eight known Myo1 isoforms. The Myo1 family is involved in the regulation of gene expression, cytoskeletal rearrangements, delivery of proteins to the cell surface, cell migration and spreading. Thus, the important role of Myo1s in different biological processes is evident. In this study, we have investigated the effects of pentachloropseudilin (PClP), a reversible and allosteric potent inhibitor of Myo1s, on angiogenesis. We demonstrated that treatment of cells with PClP promoted a decrease in the number of vessels. The observed inhibition of angiogenesis is likely to be related to the inhibition of cell proliferation, migration and adhesion, as well as to alteration of the actin cytoskeleton pattern, as shown on a PClP-treated HUVEC cell line. Moreover, we also demonstrated that PClP treatment partially prevented the delivery of integrins to the plasma membrane. Finally, we showed that PClP caused DNA strand breaks, which are probably repaired during the cell cycle arrest in the G1 phase. Taken together, our results suggest that Myo1s participate directly in the angiogenesis process.


Subject(s)
Actin Cytoskeleton/drug effects , Angiogenesis Inhibitors/pharmacology , Cell Cycle/drug effects , Hydrocarbons, Chlorinated/pharmacology , Integrins/metabolism , Pyrroles/pharmacology , Angiogenesis Inhibitors/toxicity , Cell Adhesion/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Hydrocarbons, Chlorinated/toxicity , Integrins/genetics , Myosin Type I/metabolism , Pyrroles/toxicity , RNA, Messenger/metabolism
4.
Antimicrob Agents Chemother ; 60(10): 5867-77, 2016 10.
Article in English | MEDLINE | ID: mdl-27431229

ABSTRACT

Trypanosoma cruzi is the etiological agent of Chagas disease, affecting approximately 10 million people in the Americas and with some 40 million people at risk. The objective of this study was to evaluate the anti-T. cruzi activity of three new diamidines that have a 3,4-ethylenedioxy extension of the thiophene core, designated MB17, MB19, and MB38. All three diamidines exhibited dose-dependent inhibition of epimastigote replication. The mechanisms of action of these diamidines were investigated. Unlike MB17 and MB19, MB38 exhibited a significant increase in the number of annexin-propidium iodide double-labeled cells compared to levels in control parasites. As MB17 had shown a lower 50% inhibitory concentration (IC50) against epimastigote growth, the mechanism of action of this drug was studied in more detail. MB17 triggered a decrease in the intracellular ATP levels. As a consequence, MB17 affected the genomic DNA and kinetoplast DNA (kDNA) and impaired the parasite cell cycle. Moreover, MB17 caused DNA fragmentation, with a more severe effect on kDNA than on nuclear DNA, resulting in dyskinetoplastic cells. MB17 was tested for toxicity and effectiveness for the treatment of infected CHO-K1 cells, exhibiting a 50% cytotoxic concentration (CC50) of 13.47 ± 0.37 µM and an IC50 of 0.14 ± 0.12 µM against trypomastigote release. MB17 also diminished the infection index by 60% at 0.5 µM. In conclusion, despite belonging to the same family, these diamidines have different efficiencies. To summarize, MB17 was the most potent of these diamidines against epimastigotes, producing DNA damage preferentially in kDNA, impairing the parasite cell cycle, and decreasing the infection index and trypomastigote release from infected mammalian host cells, with a high selectivity index (SI) (<90). These data suggest that MB17 could be an interesting lead compound against T. cruzi.


Subject(s)
Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Benzamidines/chemistry , Benzamidines/pharmacology , CHO Cells/parasitology , Cell Cycle/drug effects , Cricetulus , DNA, Kinetoplast , Molecular Structure , Pentamidine/chemistry , Pentamidine/pharmacology , Thiophenes/chemistry , Thiophenes/pharmacology , Trypanocidal Agents/chemistry , Trypanosoma cruzi/cytology , Trypanosoma cruzi/genetics , Trypanosoma cruzi/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...