Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 8(6): e09744, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35770151

ABSTRACT

Nicotine (NIC) and resveratrol (RES) are chemicals in tobacco and wine, respectively, that are widely consumed concurrently worldwide. NIC is an alkaloid known to be toxic, addictive and to produce oxidative stress, while RES is thought of as an antioxidant with putative health benefits. Oxidative stress can induce genotoxic damage, yet few studies have examined whether NIC is genotoxic in vivo. In vitro studies have shown that RES can ameliorate deleterious effects of NIC. However, RES has been reported to have both antioxidant and pro-oxidant effects, and an in vivo study reported that 0.011 mM RES was genotoxic. We used the Drosophila melanogaster wing spot test to determine whether NIC and RES, first individually and then in combination, were genotoxic and/or altered the cell division. We hypothesized that RES would modulate NIC's effects. NIC was genotoxic in the standard (ST) cross in a concentration-independent manner, but not genotoxic in the high bioactivation (HB) cross. RES was not genotoxic in either the ST or HB cross at the concentrations tested. We discovered a complex interaction between NIC and RES. Depending on concentration, RES was protective of NIC's genotoxic damage, RES had no interaction with NIC, or RES had an additive or synergistic effect, increasing NIC's genotoxic damage. Most NIC, RES, and NIC/RES combinations tested altered the cell division in the ST and HB crosses. Because we used the ST and HB crosses, we demonstrated that genotoxicity and cell division alterations were modulated by the xenobiotic metabolism. These results provide evidence of NIC's genotoxicity in vivo at specific concentrations. Moreover, NIC's genotoxicity can be modulated by its interaction with RES in a complex manner, in which their interaction can lead to either increasing NIC's damage or protecting against it.

2.
Food Chem Toxicol ; 103: 233-245, 2017 May.
Article in English | MEDLINE | ID: mdl-28202360

ABSTRACT

4-nitroquinoline-1-oxide (4-NQO) is a pro-oxidant carcinogen bioactivated by xenobiotic metabolism (XM). We investigated if antioxidants lycopene [0.45, 0.9, 1.8 µM], resveratrol [11, 43, 172 µM], and vitamin C [5.6 mM] added or not with FeSO4 [0.06 mM], modulate the genotoxicity of 4-NQO [2 mM] with the Drosophila wing spot test standard (ST) and high bioactivation (HB) crosses, with inducible and high levels of cytochromes P450, respectively. The genotoxicity of 4-NQO was higher when dissolved in an ethanol - acetone mixture. The antioxidants did not protect against 4-NQO in any of both crosses. In the ST cross, resveratrol [11 µM], vitamin C and FeSO4 resulted in genotoxicity; the three antioxidants and FeSO4 increased the damage of 4-NQO. In the HB cross, none of the antioxidants, neither FeSO4, were genotoxic. Only resveratrol [172 µM] + 4-NQO increased the genotoxic activity in both crosses. We concluded that the effects of the antioxidants, FeSO4 and the modulation of 4-NQO were the result of the difference of Cyp450s levels, between the ST and HB crosses. We propose that the basal levels of the XM's enzymes in the ST cross interacted with a putative pro-oxidant activity of the compounds added to the pro-oxidant effects of 4-NQO.


Subject(s)
4-Nitroquinoline-1-oxide/toxicity , Ascorbic Acid/pharmacology , Carotenoids/pharmacology , Ferrous Compounds/pharmacology , Stilbenes/pharmacology , Animals , Antioxidants/pharmacology , Ascorbic Acid/adverse effects , Carcinogens/toxicity , Carotenoids/adverse effects , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Female , Ferrous Compounds/adverse effects , Larva/drug effects , Lycopene , Male , Resveratrol , Stilbenes/adverse effects , Toxicity Tests/methods , Wings, Animal/drug effects , Xenobiotics/toxicity
3.
Food Chem Toxicol ; 50(12): 4479-86, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23026699

ABSTRACT

Sulforaphane (SF) is an isothiocyanate present in Brassicaceae, vegetables that induce the detoxification of electrophiles and reactive oxygen species. SF has been correlated with chemoprevention mechanisms against degenerative diseases. We tested if the SF had an effect against methyl methanesulfonate (MMS), urethane (URE), 4-NQO and H(2)O(2). SF (>95% purity, 0.14, 0.28, 0.56 mM) was diluted in a DMSO/Tw80/EtOH mixture (DTE) corresponding to 25, 50, 100% of lyophilized broccoli. The SF treatment (0.14 mM) was positive for small spots in the ST cross and negative in the HB cross. In the HB cross, SF (0.28 mM) was genotoxic. In the ST cross, the SF treatments showed a tendency to reduce the genotoxic damage caused by MMS, which could be explained by the radical scavenging action of the DTE mixture. In the ST cross, the frequency of small spots in the SF 0.14 mM/URE treatment was similar to that of Water/URE, which can be explained by a DTE and SF scavenger action. In both crosses, the results for the direct oxidants, 4-NQO and H(2)O(2), were different and must be related to differential modulation of CYPs expression and the SF and DTE scavenger properties.


Subject(s)
4-Nitroquinoline-1-oxide/pharmacology , Dimethyl Sulfoxide/pharmacology , Drosophila melanogaster/drug effects , Hydrogen Peroxide/pharmacology , Thiocyanates/pharmacology , Urethane/pharmacology , Animals , Anticarcinogenic Agents/pharmacology , Brassicaceae/chemistry , DNA Damage , Drug Interactions , Female , Isothiocyanates/pharmacology , Male , Plant Extracts/pharmacology , Sulfoxides
SELECTION OF CITATIONS
SEARCH DETAIL
...