Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 55(18): 12694-12703, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34506717

ABSTRACT

Saharan dust is an important phosphorus (P) supply to remote and oligotrophic parts of the oceans and American lowland tropical rainforests. Phosphorus speciation in aeolian dust ultimately controls the release and bioavailability of P after dust deposition, but the speciation in Saharan dust and its change during the trans-Atlantic transport remains unclear. Using P K-edge X-ray absorption near edge structure (XANES) spectroscopy, we showed that with increasing dust traveling distance from the Sahara Desert to Cape Verde and to Puerto Rico, about 570 and 4000 km, respectively, the proportion of Ca-bound P (Ca-P), including both apatite and non-apatite forms, decreased from 68-73% to 50-71% and to 21-37%. The changes were accompanied by increased iron/aluminum-bound P proportion from 14-25% to 23-46% and to 44-73%, correspondingly. Laboratory simulation experiments suggest that the changes in P speciation can be ascribed to increasing degrees of particle sorting and atmospheric acidification during dust transport. The presence of relatively soluble non-apatite Ca-P in the Cape Verde dust but not in the Puerto Rico dust is consistent with the higher P water solubility of the former than the latter. Our findings provide insights into the controls of atmospheric processes on P speciation, solubility, and stability in Saharan dust.


Subject(s)
Dust , Phosphorus , Dust/analysis , Oceans and Seas , Phosphorus/analysis , X-Ray Absorption Spectroscopy , X-Rays
2.
Proc Natl Acad Sci U S A ; 113(21): 5797-803, 2016 May 24.
Article in English | MEDLINE | ID: mdl-26699469

ABSTRACT

Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using "dry" geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.

SELECTION OF CITATIONS
SEARCH DETAIL
...