Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Front Nutr ; 11: 1404538, 2024.
Article in English | MEDLINE | ID: mdl-38873563

ABSTRACT

Protein is an essential macronutrient in our diet, source of nitrogen and essential amino acids, but the biological utilization of dietary protein depends on its digestibility and the absorption of amino acids and peptides in the gastrointestinal tract. The methods to define the amount and the quality of protein to meet human nutritional needs, such as the Digestible Indispensable Amino Acid Score (DIAAS), require the use of animal models or human studies. These in vivo methods are the reference in protein quality evaluation, but they are expensive and long-lasting procedures with significant ethical restrictions. Therefore, the development of rapid, reproducible and in vitro digestion methods validated with in vivo data is an old demand. This review describes the challenges of the in vitro digestion methods in the evaluation of the protein nutritional quality. In addition to the technical difficulties to simulate the complex and adaptable processes of digestion and absorption, these methods are affected by similar limitations as the in vivo procedures, i.e., analytical techniques to accurately determine bioavailable amino acids and the contribution of the endogenous nitrogen. The in vitro methods used for the evaluation of protein digestibility, with special attention on those showing comparative data, are revised, emphasizing their pros and cons. The internationally harmonized digestion protocol proposed by the INFOGEST network is being adapted to evaluate protein and amino acid digestibility. The inter-laboratory reproducibility of this protocol was demonstrated for dairy products. The in vivo/in vitro comparability results obtained to date with this protocol for several plant and animal sources are promising, but it requires an extensive validation with a wider range of foods and substrates with known in vivo digestibility. These in vitro methods will probably not be applicable to all foods, and therefore, it is important to identify their limitations, not to elude their use, but to apply them within the limits, by using the appropriate standards and references, and always as a complementary tool to in vivo tests to reduce their number.

2.
Food Funct ; 15(7): 3722-3730, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38489157

ABSTRACT

Bioactive peptides have been considered potential components for the future functional foods and nutraceuticals generation. The enzymatic method of hydrolysis has several advantages compared to those of chemical hydrolysis and fermentation. Despite this fact, the high cost of natural and commercial proteases limits the commercialization of hydrolysates in the food and pharmacological industries. For this reason, more efficient and economically interesting techniques, such as the immobilisation of the enzyme, are gaining attention. In the present study, a new protein hydrolysate from Lupinus angustifolius was generated by enzymatic hydrolysis through the immobilisation of the enzyme alcalase® (imLPH). After the chemical and nutritional characterization of the imLPH, an in vivo study was carried out in order to evaluate the effect of 12 weeks treatment with imLPH on the plasmatic lipid profile and antioxidant status in western-diet-fed apolipoprotein E knockout mice. The immobilisation of alcalase® generated an imLPH with a degree of hydrolysis of 29.71 ± 2.11%. The imLPH was mainly composed of protein (82.50 ± 0.88%) with a high content of glycine/glutamine, arginine, and aspartic acid/asparagine. The imLPH-treatment reduced the amount of abdominal white adipose tissue, total plasma cholesterol, LDL-C, and triglycerides, as well as the cardiovascular risk indexes (CRI) -I, CRI-II, and atherogenic index of plasma. The imLPH-treated mice also showed an increase in the plasma antioxidant capacity. For the first time, this study demonstrates the beneficial in vivo effect of a lupin protein hydrolysate obtained with the alcalase® immobilised and points out this approach as a possible cost-effective solution at the expensive generation of the hydrolysate through the traditional batch conditions with soluble enzymes.


Subject(s)
Lupinus , Protein Hydrolysates , Animals , Mice , Protein Hydrolysates/pharmacology , Protein Hydrolysates/chemistry , Antioxidants/chemistry , Lupinus/metabolism , Subtilisins/metabolism , Endopeptidases/metabolism , Hydrolysis
3.
Mol Nutr Food Res ; 68(5): e2300503, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38308501

ABSTRACT

Oxidative stress plays a crucial role in neurodegenerative diseases like Parkinson's and Alzheimer's. Studies indicate the relationship between oxidative stress and the brain damage caused by a high-fat diet. It is previously found that a lupin protein hydrolysate (LPH) has antioxidant effects on human leukocytes, as well as on the plasma and liver of Western diet (WD)-fed ApoE-/- mice. Additionally, LPH shows anxiolytic effects in these mice. Given the connection between oxidative stress and anxiety, this study aimed to investigate the antioxidant effects of LPH on the brain of WD-fed ApoE-/- mice. LPH (100 mg kg-1) or a vehicle is administered daily for 12 weeks. Peptide analysis of LPH identified 101 amino acid sequences (36.33%) with antioxidant motifs. Treatment with LPH palliated the decrease in total antioxidant activity caused by WD ingestion and regulated the nitric oxide synthesis pathway in the brain of the animals. Furthermore, LPH increased cerebral glutathione levels and the activity of catalase and glutathione reductase antioxidant enzymes and reduced the 8-hydroxy-2'-deoxyguanosine levels, a DNA damage marker. These findings, for the first time, highlight the antioxidant activity of LPH in the brain. This hydrolysate could potentially be used in future nutraceutical therapies for neurodegenerative diseases.


Subject(s)
Antioxidants , Neurodegenerative Diseases , Mice , Humans , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Protein Hydrolysates/pharmacology , Diet, Western , Oxidative Stress , Brain/metabolism , Apolipoproteins E/genetics
4.
Antioxidants (Basel) ; 12(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37507875

ABSTRACT

MOMAST® is a patented natural phenolic complex, rich in tyrosol (9.0 g/kg, Tyr), hydroxityrosol (43,5 g/kg, OH-Tyr), and verbascoside (5.0 g/Kg), which is obtained from the OVW by-product of the Coratina cultivar with potent direct antioxidant activity (measured by DPPH and FRAP assays, respectively). Indeed, MOMAST® represents an innovative sustainable bioactive ingredient which has been obtained with ethical and empowering behavior by applying the principles of a circular economy. In the framework of research aimed at fostering its health-promoting activity, in this study it was clearly demonstrated that MOMAST® treatment reduced the oxidative stress and levels of total cholesterol (TC) and low-density lipoprotein (LDL) cholesterol, and increased the HDL levels, without changes in the triglyceride (TG) levels in Western diet (WD)-fed mice. The modulation of the plasmatic lipid profile is similar to red yeast rice (RYR) containing Monacolin K (3%). In addition, at the molecular level in liver homogenates, similarly to RYR, MOMAST® exerts cholesterol-lowering activity through the activation of LDL receptor, whereas, unlike RYR, MOMAST® reduces proprotein convertase subtilisin/kexin type 9 (PCSK9) protein levels via hepatic nuclear factor 1 (HNF1)-α activation. Hence, this study provides the proof of concept regarding the hypocholesterolemic activity of MOMAST, which could be successfully exploited as an active ingredient for the development of innovative and sustainable dietary supplements and functional foods.

5.
Food Chem ; 426: 136458, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37329795

ABSTRACT

Dipeptidyl peptidase IV (DPP-IV) is considered a key target for the diabetes treatment, since it is involved in glucose metabolism. Although lupin protein consumption shown hypoglycemic activity, there is no evidence of its effect on DPP-IV activity. This study demonstrates that a lupin protein hydrolysate (LPH), obtained by hydrolysis with Alcalase, exerts anti-diabetic activity by modulating DPP-IV activity. In fact, LPH decreased DPP-IV activity in a cell-free and cell-based system. Contextually, Caco-2 cells were employed to identify LPH peptides that can be intestinally trans-epithelial transported. Notably, 141 different intestinally transported LPH sequences were identified using nano- and ultra-chromatography coupled to mass spectrometry. Hence, it was demonstrated that LPH modulated the glycemic response and the glucose concentration in mice, by inhibiting the DPP-IV. Finally, a beverage containing 1 g of LPH decreased DPP-IV activity and glucose levels in humans.


Subject(s)
Diabetes Mellitus , Dipeptidyl-Peptidase IV Inhibitors , Lupinus , Humans , Animals , Mice , Lupinus/chemistry , Caco-2 Cells , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Peptides/chemistry , Dipeptidyl Peptidase 4/metabolism , Glucose
6.
Antioxidants (Basel) ; 12(5)2023 May 15.
Article in English | MEDLINE | ID: mdl-37237964

ABSTRACT

Hempseed (Cannabis sativa) is one of the most promising sources of plant proteins. It contains approximately 24% (w/w) protein, and edestin accounts for approximately 60-80% (w/w) of its total proteins. In a framework of research aimed at fostering the proteins recovered from the press cake by-products generated after the extraction of hempseed oil, two hempseed protein hydrolysates (HH1 and HH2) were produced at an industrial level using a mixture of different enzymes from Aspergillus niger, Aspergillus oryzae, and Bacillus licheniformis for different times (5 h and 18 h). Using a combination of different direct antioxidant tests (DPPH, TEAC, FRAP, and ORAC assays, respectively), it has been demonstrated that HHs exert potent, direct antioxidant activity. A crucial feature of bioactive peptides is their intestinal bioavailability; for this reason, in order to solve this peculiar issue, the ability of HH peptides to be transported by differentiated human intestinal Caco-2 cells has been evaluated. Notably, by using mass spectrometry analysis (HPLC Chip ESI-MS/MS), the stable peptides transported by intestinal cells have been identified, and dedicated experiments confirmed that the trans-epithelial transported HH peptide mixtures retain their antioxidant activity, suggesting that these hempseed hydrolysates may be considered sustainable antioxidant ingredients to be exploited for further application, i.e., nutraceutical and/or food industries.

7.
Int J Mol Sci ; 23(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36077225

ABSTRACT

Anxiety is the most prevalent psychiatric disorder worldwide, causing a substantial economic burden due to the associated healthcare costs. Given that commercial anxiolytic treatments may cause important side effects and have medical restrictions for prescription and high costs, the search for new natural and safer treatments is gaining attention. Since lupin protein hydrolysate (LPH) has been shown to be safe and exert anti-inflammatory and antioxidant effects, key risk factors for the anxiety process and memory impairment, we evaluated in this study the potential effects of LPH on anxiety and spatial memory in a Western diet (WD)-induced anxiety model in ApoE-/- mice. We showed that 20.86% of the 278 identified LPH peptides have biological activity related to anxiolytic/analgesic effects; the principal motifs found were the following: VPL, PGP, YL, and GQ. Moreover, 14 weeks of intragastrical LPH treatment (100 mg/kg) restored the WD-induced anxiety effects, reestablishing the anxiety levels observed in the standard diet (SD)-fed mice since they spent less time in the anxiety zones of the elevated plus maze (EPM). Furthermore, a significant increase in the number of head dips was recorded in LPH-treated mice, which indicates a greater exploration capacity and less fear due to lower levels of anxiety. Interestingly, the LPH group showed similar thigmotaxis, a well-established indicator of animal anxiety and fear, to the SD group, counteracting the WD effect. This is the first study to show that LPH treatment has anxiolytic effects, pointing to LPH as a potential component of future nutritional therapies in patients with anxiety.


Subject(s)
Anti-Anxiety Agents , Animals , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Anxiety/psychology , Apolipoproteins E/genetics , Apolipoproteins E/pharmacology , Behavior, Animal , Diet, Western/adverse effects , Humans , Maze Learning , Mice , Protein Hydrolysates/pharmacology , Protein Hydrolysates/therapeutic use
8.
J Agric Food Chem ; 70(27): 8243-8253, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35767743

ABSTRACT

We have previously reported the in vitro hypocholesterolemic, anti-inflammatory, and antioxidant effects of Alcalase-generated lupin protein hydrolysate (LPH). Given that lipoprotein deposition, oxidative stress, and inflammation are the main components of atherogenesis, we characterized the LPH composition, in silico identified LPH-peptides with activities related to atherosclerosis, and evaluated the in vivo LPH effects on atherosclerosis risk factors in a mouse model of atherosclerosis. After 15 min of Alcalase hydrolysis, peptides smaller than 8 kDa were obtained, and 259 peptides out of 278 peptides found showed biological activities related to atherosclerosis risk factors. Furthermore, LPH administration for 12 weeks reduced the plasma lipids, as well as the cardiovascular and atherogenic risk indexes. LPH also increased the total antioxidant capacity, decreased endothelial permeability, inflammatory response, and atherogenic markers. Therefore, this study describes for the first time that LPH prevents the early stages of atherosclerosis.


Subject(s)
Atherosclerosis , Lupinus , Animals , Antioxidants , Apolipoproteins E/genetics , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Diet, Western , Lupinus/chemistry , Mice , Peptides , Protein Hydrolysates/pharmacology , Subtilisins
9.
Food Funct ; 13(7): 4158-4170, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35316320

ABSTRACT

Lupin protein hydrolysates (LPHs) are gaining attention in the food and nutraceutical industries due to their several beneficial health effects. Recently, we have shown that LPH treatment reduces liver cholesterol and triglyceride levels in hypercholesterolemic mice. The aim of this study was to elucidate the effects of LPH treatment on the molecular mechanism underlying liver cholesterol metabolism in ApoE-/- mice fed the Western diet. After identifying the composition of the peptide within the LPH mixture and determining its ability to reduce HMGCoAR activity in vitro, its effect on the LDLR and PCSK9 pathways was measured in liver tissue from the same mice. Thus, the LPH reduced the protein levels of HMGCoAR and increased the phosphorylated inactive form of HMGCoAR and the pHMGCoAR/HMGCoAR ratio, which led to the deactivation of de novo cholesterol synthesis. Furthermore, the LPH decreased the protein levels of SREBP2, a key upstream transcription factor involved in the expression of HMGCoAR and LDLR. Consequently, LDLR protein levels decreased in the liver of LPH-treated animals. Interestingly, the LPH also increased the protein levels of pAMPK responsible for HMGCoAR phosphorylation. Furthermore, the LPH controlled the PSCK9 signal pathway by decreasing its transcription factor, the HNF1-α protein. Consequently, lower PSCK9 protein levels were found in the liver of LPH-treated mice. This is the first study elucidating the molecular mechanism at the basis of the hypocholesterolemic effects exerted by the LPH in an in vivo model. All these findings point out LPHs as a future lipid-lowering ingredient to develop new functional foods.


Subject(s)
Lupinus , Proprotein Convertase 9 , Animals , Apolipoproteins E/genetics , Diet, Western/adverse effects , Liver/metabolism , Lupinus/metabolism , Mice , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , Protein Hydrolysates/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism
10.
Food Res Int ; 152: 110720, 2022 02.
Article in English | MEDLINE | ID: mdl-35181114

ABSTRACT

A preceding paper has shown that a hempseed peptic hydrolysate displays a cholesterol-lowering activity with a statin-like mechanism of action in HepG2 cells and a potential hypoglycemic activity by the inhibition of dipeptidyl peptidase-IV in Caco-2 cells. In the framework of a research aimed at fostering the multifunctional behavior of hempseed peptides, we present here the identification and evaluation of some antioxidant peptides from the same hydrolysate. After evaluation of its diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, a trans-epithelial transport experiment was performed using differentiated Caco-2 cells that permitted the identification of five transported peptides that were synthesized and evaluated by measuring the oxygen radical absorbance capacity (ORAC), the ferric reducing antioxidant power (FRAP), and the 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS), and diphenyl-2-picrylhydrazyl radical DPPH assays. The most active peptides, i.e. WVSPLAGRT (H2) and IGFLIIWV (H3), were then tested in cell assays. Both peptides were able to reduce the H2O2-induced reactive oxygen species (ROS), lipid peroxidation, and nitric oxide (NO) production levels in HepG2 cells, via the modulation of Nrf-2 and iNOS pathways, respectively.


Subject(s)
Antioxidants , Hydrogen Peroxide , Antioxidants/pharmacology , Caco-2 Cells , Humans , Lipid Peroxidation , Peptides/pharmacology
11.
J Agric Food Chem ; 70(2): 577-583, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35007086

ABSTRACT

WVSPLAGRT (H2) and IGFLIIWV (H3) are two transepithelial transported intestinal peptides obtained from the hydrolysis of hempseed protein with pepsin, which exert antioxidant activity in HepG2 cells. Notably, both peptides reduce the H2O2-induced reactive oxygen species, lipid peroxidation, and nitric oxide (NO) production levels in HepG2 cells via the modulation of the nuclear factor erythroid 2-related factor 2 and the inducible nitric oxide synthase (iNOS) pathways, respectively. Due to the close link between inflammation and oxidative stress and with the objective of fostering the multifunctional behavior of bioactive peptides, in this study, the molecular characterization of the anti-inflammatory and immunomodulatory properties of H2 and H3 was carried out in HepG2 cells. In fact, both peptides were shown to modulate the production of pro (IFN-γ: -33.0 ± 6.7% H2, p = 0.011; -13.1 ± 2.0% H3, p = <0.0001; TNF: -17.6 ± 1.7% H2, p = 0.0004; -20.3 ± 1.7% H3, p = <0.0001; and IL-6: -15.1 ± 6.5% H3, p = 0.010)- and anti (IL-10: +9.6 ± 3.1% H2, p = 0.010; +26.0 ± 2.3% H3, p = < 0.0001)-inflammatory cytokines and NO (-9.0 ± 0.7% H2, p = <0.0001; -7.2 ± 1.8% H3, p = <0.0001) through regulation of the NF-κB and iNOS pathways, respectively, in HepG2 cells stimulated by lipopolysaccharides.


Subject(s)
Cannabis , Lipopolysaccharides , Anti-Inflammatory Agents/pharmacology , Cannabis/metabolism , Cytokines/genetics , Cytokines/metabolism , Hepatocytes/metabolism , Humans , Hydrogen Peroxide , NF-kappa B/genetics , NF-kappa B/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism
12.
Nutrients ; 13(11)2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34836297

ABSTRACT

Soccer is the most practiced team sport in the world. Due to the importance of nutrition in soccer performance, controlling the body composition and dietary guidelines of players takes place starting from lower categories. The objective of this study was to evaluate body composition and adherence to the Mediterranean diet of U12 players from a professional soccer team and to identify their dietary weak points. Seventy-one U12 male soccer players participated in the study. Weight, height, percentiles, skinfolds, and body fat were measured by a certified anthropometrist following the procedures recommended by the International Society for the Advancement of Kinanthropometry. The Mediterranean diet adherence test (KIDMED) was the questionnaire used to evaluate eating habits. In addition, a comparison was made among field positions. The results showed percentiles and body fat percentages appropriate for their age. Furthermore, the average score on the KIDMED test showed that the players generally adhered well to the Mediterranean diet, although they should improve their consumption of fruits and vegetables, as well as avoid skipping breakfast. Moreover, goalkeepers and defenders had a higher percentile BMI and percentage of fat than midfielders and forwards. In addition, these players had lower KIDMED values than midfielders and forwards. Although U12 soccer players have an appropriate body composition and adherence to the Mediterranean diet, there are differences between the different field positions that should be assessed by coaches, doctors, and nutritionists/dietitians.


Subject(s)
Athletic Performance , Body Composition , Diet, Mediterranean , Soccer , Anthropometry , Body Height , Body Mass Index , Child , Cross-Sectional Studies , Feeding Behavior , Humans , Male , Surveys and Questionnaires
13.
Antioxidants (Basel) ; 10(8)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34439470

ABSTRACT

Metabolic-associated fatty liver disease (MAFLD) is the most important cause of liver disease worldwide. It is characterized by the accumulation of fat in the liver and is closely associated with abdominal obesity. In addition, oxidative stress and inflammation are significant features involved in MAFLD. Recently, our group demonstrated that lupin protein hydrolysates (LPHs) had lipid lowering, antioxidant, and anti-inflammatory effects. Sixty male mice fed with a Western diet were intragastrically treated with LPHs (or vehicle) for 12 weeks. Liver and adipose tissue lipid accumulation and hepatic inflammatory and oxidant status were evaluated. A significant decrease in steatosis was observed in LPHs-treated mice, which presented a decreased gene expression of CD36 and LDL-R, crucial markers in MAFLD. In addition, LPHs increased the hepatic total antioxidant capacity and reduced the hepatic inflammatory status. Moreover, LPHs-treated mice showed a significant reduction in abdominal adiposity. This is the first study to show that the supplementation with LPHs markedly ameliorates the generation of the steatotic liver caused by the intake of a Western diet and reduces abdominal obesity in ApoE-/- mice. Future clinical trials should shed light on the effects of LPHs on MAFLD.

14.
Mol Nutr Food Res ; 65(14): e2100139, 2021 07.
Article in English | MEDLINE | ID: mdl-34015184

ABSTRACT

SCOPE: We have previously demonstrated the anti-inflammatory and antioxidant properties of in vitro administered Lupinus angustifolius protein hydrolysates (LPHs) on human peripheral blood mononuclear cells (PBMCs). This study aims to evaluate the safety and efficacy of a beverage containing LPHs (LPHb) on the immune, oxidative and metabolic status of healthy subjects. METHODS AND RESULTS: In this open-label intervention, 33 participants daily ingest a LPHb containing 1 g LPHs for 28 days. Biochemical parameters are assayed in fasting peripheral blood and urine samples before, during (14 days) and after LPHb ingestion. Participants' health status and the immune and antioxidant responses of PBMCs are also evaluated throughout the trial. The LPHb ingestion is safe and effective in both increasing the anti-/pro-inflammatory response of PBMCs and improving the cellular anti-oxidant capacity. LPHb also reduces the low-density lipoprotein-cholesterol (LDL-C)/high-density lipoprotein-cholesterol (HDL-C) atherogenic index. LPHb effect is particularly beneficial on decreasing not only the LDL-C/HDL-C index but also serum total cholesterol levels in the male cohort that shows the highest baseline levels of well-known cardiovascular risk factors. CONCLUSION: This is the first study to show the pleiotropic actions of a lupine bioactive peptides-based functional food on key steps of atherosclerosis including inflammation, oxidative stress, and cholesterol metabolism.


Subject(s)
Beverages , Lipids , Lupinus/chemistry , Oxidative Stress , Protein Hydrolysates/pharmacology , Adult , Antioxidants/metabolism , Biomarkers/blood , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Cytokines/metabolism , Female , Healthy Volunteers , Humans , Inflammation , Kidney , Leukocytes, Mononuclear/drug effects , Lipids/blood , Liver , Longitudinal Studies , Male , Oxidative Stress/drug effects
15.
Antioxidants (Basel) ; 10(1)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467632

ABSTRACT

In the framework of research aimed at promoting the nutraceutical properties of the phenolic extract (BUO) obtained from an extra virgin olive oil of the Frantoio cultivar cultivated in Tuscany (Italy), with a high total phenols content, this study provides a comprehensive characterization of its antioxidant properties, both in vitro by Trolox equivalent antioxidant capacity, oxygen radical absorbance capacity, ferric reducing antioxidant power, and 2,2-diphenyl-1-picrylhydrazyl assays, and at the cellular level in human hepatic HepG2 and human intestinal Caco-2 cells. Notably, in both cell systems, after H2O2 induced oxidative stress, the BUO extract reduced reactive oxygen species, lipid peroxidation, and NO overproduction via modulation of inducible nitric oxide synthase protein levels. In parallel, the intestinal transport of the different phenolic components of the BUO phytocomplex was assayed on differentiated Caco-2 cells, a well-established model of mature enterocytes. The novelty of our study lies in having investigated the antioxidant effects of a complex pool of phenolic compounds in an extra virgin olive oil (EVOO) extract, using either in vitro assays or liver and intestinal cell models, rather than the effects of single phenols, such as hydroxytyrosol or oleuropein. Finally, the selective trans-epithelial transport of some oleuropein derivatives was observed for the first time in differentiated Caco-2 cells.

16.
Nutrients ; 12(9)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957505

ABSTRACT

A nutritional ergogenic aid (NEA) can help athletes optimize performance, but an evidence-based analysis is required in order to support training outcomes or competition performance in specific events. Racquet sports players are regularly exposed to a high-intensity workload throughout the tournament season. The activity during a match is characterized by variable durations (2-4 h) of repeated high-intensity bouts interspersed with standardized rest periods. Medline/PubMed, Scopus, and EBSCO were searched from their inception until February 2020 for randomized controlled trials (RCTs). Two independent reviewers extracted data, after which they assessed the risk of bias and the quality of trials. Out of 439 articles found, 21 met the predefined criteria: tennis (15 trials), badminton (three trials), paddle (one trial), and squash (two trials). Among all the studied NEAs, acute dosages of caffeine (3-6 mg/kg) 30-60 min before a match have been proven to improve specific skills and accuracy but may not contribute to improve perceived exertion. Currently, creatine, sodium bicarbonate, sodium citrate, beetroot juice, citrulline, and glycerol need more studies to strengthen the evidence regarding improved performance in racquet sports.


Subject(s)
Athletic Performance , Dietary Supplements , Racquet Sports , Humans
17.
Nutrients ; 12(6)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512720

ABSTRACT

Peptides from several plant food proteins not only maintain the nutritional values of the original protein and decrease the environmental impact of animal agriculture, but also exert biological activities with significant health-beneficial effects. Wheat is the most important food grain source in the world. However, negative attention on wheat-based products has arose due to the role of gluten in celiac disease. A controlled enzymatic hydrolysis could reduce the antigenicity of wheat gluten protein hydrolysates (WGPHs). Therefore, the aims of the present study were to evaluate the effects of the in vitro administration of Alcalase-generated WGPHs on the immunological and antioxidant responses of human peripheral blood mononuclear cells (PBMCs) from 39 healthy subjects. WGPH treatment reduced cell proliferation and the production of the Type 1 T helper (Th1) and Th17 pro-inflammatory cytokines IFN-γ and IL-17, respectively. WPGHs also improved the cellular anti-inflammatory microenvironment, increasing Th2/Th1 and Th2/Th17 balances. Additionally, WGPHs improved global antioxidant capacity, increased levels of the reduced form of glutathione and reduced nitric oxide production. These findings, not previously reported, highlight the beneficial capacity of these vegetable protein hydrolysates, which might represent an effective alternative in functional food generation.


Subject(s)
Antioxidants/metabolism , Glutens/metabolism , Leukocytes, Mononuclear/immunology , Protein Hydrolysates/pharmacology , Cell Proliferation/drug effects , Cells, Cultured , Functional Food , Glutathione/metabolism , Humans , Hydrolysis , Inflammation Mediators/metabolism , Interferon-gamma/metabolism , Interleukin-17/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/physiology , Nitric Oxide/metabolism , Th1 Cells/immunology , Th2 Cells/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...