Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ISA Trans ; 71(Pt 2): 448-457, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28899577

ABSTRACT

This article presents a suboptimal control strategy with finite horizon for affine nonlinear discrete systems with both state and input delays. The Dynamic Programming Approach is used to obtain the suboptimal control sequence, but in order to avoid the computation of the Bellman functional, a numerical approximation of this function is proposed in every step. The feasibility of our proposal is demonstrated via an experimental test on a dehydration process and the obtained results show a good performance and behavior of this process. Then in order to demonstrate the benefits of using this kind of control strategy, the results are compared with a non optimal control strategy, particularly with respect to results produced by an industrial Proportional Integral Derivative (PID) Honeywell controller, which is tuned using the Ziegler-Nichols method.

2.
ISA Trans ; 67: 1-8, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27939564

ABSTRACT

This paper is devoted to obtain a stabilizing optimal nonlinear controller based on the well known Control Lyapunov-Krasovskii Functional (CLKF) approach, aimed to solve the inverse optimality problem for a class of nonlinear time delay systems. To determine sufficient conditions for the Bellman's equation solution of the system under consideration, the CLKF and the inverse optimality approach are considered in this paper. In comparison with previous results, this scheme allows us to obtain less conservative controllers, implying energy saving (in terms of average power consumption for a specific thermo-electrical process). Sufficient delay-independent criteria in terms of CLKF is obtained such that the closed-loop nonlinear time-delay system is guaranteed to be local Asymptotically Stable. To illustrate the effectiveness of the theoretical results, a comparative study with an industrial PID controller tuned by the Ziegler-Nichols methodology (Z-N) and a Robust-PID tuned by using the D-partition method is presented by online experimental tests for an atmospheric drying process with time delay in its dynamics.

SELECTION OF CITATIONS
SEARCH DETAIL