Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29780749

ABSTRACT

Ticks are among the most prevalent blood-feeding arthropods, and they act as vectors and reservoirs for numerous pathogens. Sialotranscriptomic characterizations of tick responses to blood feeding and pathogen infections can offer new insights into the molecular interplay occurring at the tick-host-pathogen interface. In the present study, we aimed to identify and characterize Rhipicephalus bursa salivary gland (SG) genes that were differentially expressed in response to blood feeding and Babesia ovis infection. Our experimental approach consisted of RNA sequencing of SG from three different tick samples, fed-infected, fed-uninfected, and unfed-uninfected, for characterization and inter-comparison. Overall, 7,272 expressed sequence tags (ESTs) were constructed from unfed-uninfected, 13,819 ESTs from fed-uninfected, and 15,292 ESTs from fed-infected ticks. Two catalogs of transcripts that were differentially expressed in response to blood feeding and B. ovis infection were produced. Four genes coding for a putative vitellogenin-3, lachesin, a glycine rich protein, and a secreted cement protein were selected for RNA interference functional studies. A reduction of 92, 65, and 51% was observed in vitellogenin-3, secreted cement, and lachesin mRNA levels in SG, respectively. The vitellogenin-3 knockdown led to increased tick mortality, with 77% of ticks dying post-infestation. The reduction of the secreted cement protein-mRNA levels resulted in 46% of ticks being incapable of correctly attaching to the host and significantly lower female weights post-feeding in comparison to the control group. The lachesin knockdown resulted in a 70% reduction of the levels associated with B. ovis infection in R. bursa SG and 70% mortality. These results improved our understanding of the role of tick SG genes in Babesia infection/proliferation and tick feeding. Moreover, lachesin, vitellogenin-3, and secreted cement proteins were validated as candidate protective antigens for the development of novel tick and tick-borne disease control measures.


Subject(s)
Babesia/pathogenicity , Babesiosis/transmission , Host-Pathogen Interactions/physiology , Rhipicephalus/parasitology , Tick-Borne Diseases/parasitology , Animals , Babesiosis/parasitology , Female , Gene Expression Profiling , Quaternary Ammonium Compounds/metabolism , RNA Interference , RNA, Messenger/genetics , RNA, Small Interfering/genetics , Rabbits , Salivary Glands/metabolism , Sheep , Vitellogenins/genetics
2.
Vector Borne Zoonotic Dis ; 9(1): 33-40, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18781886

ABSTRACT

A total of two-thousand and six ticks, collected from 2002 to 2006 in areas belonging to seven districts of Mainland Portugal and also in Madeira Island, were examined by polymerase chain reaction (PCR) for the presence of Anaplasma phagocytophilum. Active infections were detected exclusively in Ixodes species, including six questing I. ricinus nymphs from Madeira Island, one questing I. ventalloi nymph from Setúbal District, and two I. ventalloi adults found parasitizing domestic cats in both Setúbal and Santarém District. These findings confirm prior observations and suggest the persistence of A. phagocytophilum on Madeira Island. Moreover, it adds I. ventalloi and domestic cats to the list of potential elements of the agent's enzootic cycles in Portugal. Molecular analysis of PCR amplicons suggests the existence of two A. phagocytophilum genotypes in Portugal, one of which is identical or very similar to North American strains implicated in human disease.


Subject(s)
Anaplasma phagocytophilum/genetics , Arachnid Vectors/microbiology , Ixodes/microbiology , Animals , DNA, Bacterial/genetics , Ehrlichiosis/microbiology , Female , Genotype , Humans , Male , Phylogeny , Polymerase Chain Reaction , Portugal , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...