Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotherapeutics ; 21(3): e00341, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38453562

ABSTRACT

Therapeutic hypothermia is the standard of care for hypoxic-ischemic (HI) encephalopathy. Inter-alpha Inhibitor Proteins (IAIPs) attenuate brain injury after HI in neonatal rats. Human (h) IAIPs (60 â€‹mg/kg) or placebo (PL) were given 15 â€‹min, 24 and 48 â€‹h to postnatal (P) day-7 rats after carotid ligation and 8% oxygen for 90 â€‹min with (30 â€‹°C) and without (36 â€‹°C) exposure to hypothermia 1.5 â€‹h after HI for 3 â€‹h. Hemispheric volume atrophy (P14) and neurobehavioral tests including righting reflex (P8-P10), small open field (P13-P14), and negative geotaxis (P14) were determined. Hemispheric volume atrophy in males was reduced (P â€‹< â€‹0.05) by 41.9% in the normothermic-IAIP and 28.1% in the hypothermic-IAIP compared with the normothermic-PL group, and in females reduced (P â€‹< â€‹0.05) by 30.3% in the normothermic-IAIP, 45.7% in hypothermic-PL, and 55.2% in hypothermic-IAIP compared with the normothermic-PL group after HI. Hypothermia improved (P â€‹< â€‹0.05) the neuroprotective effects of hIAIPs in females. The neuroprotective efficacy of hIAIPs was comparable to hypothermia in female rats (P â€‹= â€‹0.183). Treatment with hIAIPs, hypothermia, and hIAIPs with hypothermia decreased (P â€‹< â€‹0.05) the latency to enter the peripheral zone in the small open field test in males. We conclude that hIAIPs provide neuroprotection from HI brain injury that is comparable to the protection by hypothermia, hypothermia increases the effects of hIAIPs in females, and hIAIPs and hypothermia exhibit some sex-related differential effects.


Subject(s)
Alpha-Globulins , Hypothermia, Induced , Hypoxia-Ischemia, Brain , Neuroprotective Agents , Animals , Female , Humans , Male , Rats , Alpha-Globulins/metabolism , Alpha-Globulins/pharmacology , Animals, Newborn , Hypothermia, Induced/methods , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Sprague-Dawley
2.
Int J Mol Sci ; 23(21)2022 Nov 03.
Article in English | MEDLINE | ID: mdl-36362257

ABSTRACT

Hypoxia-ischemia (HI)-related brain injury is an important cause of morbidity and long-standing disability in newborns. We have previously shown that human plasma-derived inter-alpha inhibitor proteins (hIAIPs) attenuate HI-related brain injury in neonatal rats. The optimal dose of hIAIPs for their neuroprotective effects and improvement in behavioral outcomes remains to be determined. We examined the efficacy of 30, 60, or 90 mg/kg of hIAIPs administered to neonatal rats after exposure to HI for 2 h. Postnatal day 7 (P7) Wistar rats were exposed to either sham-surgery or unilateral HI (right carotid artery ligation, 2 h of 8% O2) brain injury. A placebo, 30, 60, or 90 mg/kg of hIAIPs were injected intraperitoneally at 0, 24 and 48 h after HI (n = 9-10/sex). We carried out the following behavioral analyses: P8 (righting reflex), P9 (negative geotaxis) and P10 (open-field task). Rats were humanely killed on P10 and their brains were stained with cresyl violet. Male extension/contraction responses and female righting reflex times were higher in the HI placebo groups than the sham groups. Female open-field exploration was lower in the HI placebo group than the sham group. hIAIPs attenuated these behavioral deficits. However, the magnitude of the responses did not vary by hIAIP dose. hIAIPs reduced male brain infarct volumes in a manner that correlated with improved behavioral outcomes. Increasing the hIAIP dose from 30 to 90 mg/kg did not further accentuate the hIAIP-related decreases in infarct volumes. We conclude that larger doses of hIAIPs did not provide additional benefits over the 30 mg/kg dose for behavior tasks or reductions in infarct volumes in neonatal rats after exposure to severe HI.


Subject(s)
Brain Injuries , Hypoxia-Ischemia, Brain , Neuroprotective Agents , Animals , Female , Humans , Infant, Newborn , Male , Rats , Animals, Newborn , Brain/metabolism , Brain Infarction/metabolism , Brain Injuries/metabolism , Disease Models, Animal , Hypoxia-Ischemia, Brain/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Rats, Wistar
3.
FASEB J ; 35(3): e21399, 2021 03.
Article in English | MEDLINE | ID: mdl-33559227

ABSTRACT

The high-mobility group box-1 (HMGB1) protein is a transcription-regulating protein located in the nucleus. However, it serves as a damage-associated molecular pattern protein that activates immune cells and stimulates inflammatory cytokines to accentuate neuroinflammation after release from damaged cells. In contrast, Inter-alpha Inhibitor Proteins (IAIPs) are proteins with immunomodulatory effects including inhibition of pro-inflammatory cytokines. We have demonstrated that IAIPs exhibit neuroprotective properties in neonatal rats exposed to hypoxic-ischemic (HI) brain injury. In addition, previous studies have suggested that the light chain of IAIPs, bikunin, may exert its anti-inflammatory effects by inhibiting HMGB1 in a variety of different injury models in adult subjects. The objectives of the current study were to confirm whether HMGB1 is a target of IAIPs by investigating the potential binding characteristics of HMGB1 and IAIPs in vitro, and co-localization in vivo in cerebral cortices after exposure to HI injury. Solid-phase binding assays and surface plasmon resonance (SPR) were used to determine the physical binding characteristics between IAIPs and HMGB1. Cellular localizations of IAIPs-HMGB1 in neonatal rat cortex were visualized by double labeling with anti-IAIPs and anti-HMGB1 antibodies. Solid-phase binding and SPR demonstrated specific binding between IAIPs and HMGB1 in vitro. Cortical cytoplasmic and nuclear co-localization of IAIPs and HMGB1 were detected by immunofluorescent staining in control and rats immediately and 3 hours after HI. In conclusion, HMGB1 and IAIPs exhibit direct binding in vitro and co-localization in vivo in neonatal rats exposed to HI brain injury suggesting HMGB1 could be a target of IAIPs.


Subject(s)
Alpha-Globulins/chemistry , Cerebral Cortex/chemistry , HMGB1 Protein/chemistry , Hypoxia-Ischemia, Brain/metabolism , Alpha-Globulins/analysis , Animals , Animals, Newborn , Female , Fluorescent Antibody Technique , HMGB1 Protein/analysis , Immunohistochemistry , Rats , Rats, Wistar , Surface Plasmon Resonance
4.
Int J Dev Neurosci ; 65: 54-60, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29079121

ABSTRACT

Hypoxic-ischemic (HI) brain injury is frequently associated with premature and/or full-term birth-related complications that reflect widespread damage to cerebral cortical structures. Inflammation has been implicated in the long-term evolution and severity of HI brain injury. Inter-Alpha Inhibitor Proteins (IAIPs) are immune modulator proteins that are reduced in systemic neonatal inflammatory states. We have shown that endogenous IAIPs are present in neurons, astrocytes and microglia and that exogenous treatment with human plasma purified IAIPs decreases neuronal injury and improves behavioral outcomes in neonatal rats with HI brain injury. In addition, we have shown that endogenous IAIPs are reduced in the brain of the ovine fetus shortly after ischemic injury. However, the effect of HI on changes in circulating and endogenous brain IAIPs has not been examined in neonatal rats. In the current study, we examined changes in endogenous IAIPs in the systemic circulation and brain of neonatal rats after exposure to HI brain injury. Postnatal day 7 rats were exposed to right carotid artery ligation and 8% oxygen for 2h. Sera were obtained immediately, 3, 12, 24, and 48h and brains 3 and 24h after HI. IAIPs levels were determined by a competitive enzyme-linked immunosorbent assay (ELISA) in sera and by Western immunoblots in cerebral cortices. Serum IAIPs were decreased 3h after HI and remained lower than in non-ischemic rats up to 7days after HI. IAIP expression increased in the ipsilateral cerebral cortices 24h after HI brain injury and in the hypoxic contralateral cortices. However, 3h after hypoxia alone the 250kDa IAIP moiety was reduced in the contralateral cortices. We speculate that changes in endogenous IAIPs levels in blood and brain represent constituents of endogenous anti-inflammatory neuroprotective mechanism(s) after HI in neonatal rats.


Subject(s)
Alpha-Globulins/metabolism , Brain Injuries/etiology , Cerebral Cortex/metabolism , Gene Expression Regulation, Developmental/physiology , Hypoxia-Ischemia, Brain/complications , Age Factors , Animals , Animals, Newborn , Brain Injuries/metabolism , Brain Injuries/pathology , Female , Functional Laterality , Male , Molecular Weight , Rats , Rats, Wistar , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...