Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Struct Biotechnol J ; 19: 6125-6139, 2021.
Article in English | MEDLINE | ID: mdl-34900129

ABSTRACT

The Src-homology 2 domain containing phosphatase 2 (SHP2) plays a critical role in crucial signaling pathways and is involved in oncogenesis and in developmental disorders. Its structure includes two SH2 domains (N-SH2 and C-SH2), and a protein tyrosine phosphatase (PTP) domain. Under basal conditions, SHP2 is auto-inhibited, with the N-SH2 domain blocking the PTP active site. Activation involves a rearrangement of the domains that makes the catalytic site accessible, coupled to the association between the SH2 domains and cognate proteins containing phosphotyrosines. Several aspects of this transition are debated and competing mechanistic models have been proposed. A crystallographic structure of SHP2 in an active state has been reported (PDB code 6crf), but several lines of evidence suggests that it is not fully representative of the conformations populated in solution. To clarify the structural rearrangements involved in SHP2 activation, enhanced sampling simulations of the autoinhibited and active states have been performed, for wild type SHP2 and its pathogenic E76K variant. Our results demonstrate that the crystallographic conformation of the active state is unstable in solution, and multiple interdomain arrangements are populated, thus allowing association to bisphosphorylated sequences. Contrary to a recent proposal, activation is coupled to the conformational changes of the N-SH2 binding site, which is significantly more accessible in the active sate, rather than to the structure of the central ß-sheet of the domain. In this coupling, a previously undescribed role for the N-SH2 BG loop emerged.

2.
J Med Chem ; 64(21): 15973-15990, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34714648

ABSTRACT

We developed a new class of inhibitors of protein-protein interactions of the SHP2 phosphatase, which is pivotal in cell signaling and represents a central target in the therapy of cancer and rare diseases. Currently available SHP2 inhibitors target the catalytic site or an allosteric pocket but lack specificity or are ineffective for disease-associated SHP2 mutants. Considering that pathogenic lesions cause signaling hyperactivation due to increased levels of SHP2 association with cognate proteins, we developed peptide-based molecules with nanomolar affinity for the N-terminal Src homology domain of SHP2, good selectivity, stability to degradation, and an affinity for pathogenic variants of SHP2 that is 2-20 times higher than for the wild-type protein. The best peptide reverted the effects of a pathogenic variant (D61G) in zebrafish embryos. Our results provide a novel route for SHP2-targeted therapies and a tool for investigating the role of protein-protein interactions in the function of SHP2.


Subject(s)
Oncogenes , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , src Homology Domains/drug effects , Animals , Binding Sites , Mutation , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Signal Transduction , Zebrafish/embryology
3.
Chem Commun (Camb) ; 54(39): 4943-4946, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29700513

ABSTRACT

Here we report the design of membrane-active peptidomimetic molecules with a tunable arrangement of hydrophobic and polar groups. In spite of having the same chemical composition, the effective hydrophobicities of the compounds were different as a consequence of their chemical structure and conformational properties. The compound with lower effective hydrophobicity demonstrated antibacterial activity that was highly selective towards bacteria over mammalian cells. This study, highlighting the role in membrane selectivity of the specific arrangement of the different moieties in the molecular structure, provides useful indications for developing non-toxic antibacterial agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Peptidomimetics/pharmacology , Surface-Active Agents/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Cell Line, Transformed , Escherichia coli/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Liposomes/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Microbial Sensitivity Tests , Molecular Conformation , Molecular Dynamics Simulation , Molecular Structure , Peptidomimetics/chemistry , Peptidomimetics/toxicity , Pseudomonas aeruginosa/drug effects , Surface-Active Agents/chemistry , Surface-Active Agents/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...